• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Study points to new strategy for boosting immunotherapy effectiveness in advanced colorectal cancer

Bioengineer by Bioengineer
March 21, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings demonstrate how two cancer-related genes interact to spur metastasis and potentially enhance immune checkpoint blockade treatment

IMAGE

Credit: MD Anderson Cancer Center

Researchers at The University of Texas MD Anderson Cancer Center revealed the common oncogene KRAS as a possible explanation for why many patients with metastatic colorectal cancer (CRC) do not respond to immune checkpoint blockade (ICB) therapy.

Findings from the study, published in the March 21 online issue of Cancer Cell, shows how KRAS, a key mutation in colorectal cancer, promotes metastasis by controlling the immune-suppressive capabilities of the tumor microenvironment. The study results reveals how KRAS and its downstream target genes interact, supporting further study of a new approach to enhancing ICB therapy.

CRC is a major cause of cancer mortality worldwide. Approximately 20 percent of patients have metastatic disease at the time of diagnosis, and, despite improvements in treatments, approximately 12 percent of patients survive to five years. The quest for new effective treatments or improvements to standard-of-care therapies is crucial.

“The majority of colorectal cancer patients do not respond to immune checkpoint blockade therapy, motivating the need for study of mechanisms and combination regimens with targeted therapies and ICB,” said Ronald A. DePinho, M.D., professor of Cancer Biology. “Our study established an essential role for KRAS in modulating immune microenvironment and primary ICB resistance in advanced CRC.”

Using a genetically engineered mouse model, DePinho’s team demonstrated how a KRAS-regulated gene called interferon regulatory factor 2 (IRF2) drives immune suppression and immune therapy resistance in CRC. They showed that KRAS dampened IRF2 expression, which in turn, resulted in high expression of a protein-encoding gene called C-X-C motif chemokine ligand 3 (CXCL3). CXCL3 binds to its receptor, CXCR2, which is found on myeloid-derived suppressor cells (MDSC) that promote immune suppression and metastasis. The researchers found that restoration of IRF2 expression, or therapeutic inhibition of MDSC by targeting CXCL3-CXCR2 signaling, increased CRC sensitivity to ICB therapy.

“This KRAS-IRF2-CXCL2-CXCR3 axis provides a framework for determining which patients may respond better to ICB, and potentially identifying combination therapy to enhance ICB therapy effectiveness,” said DePinho. “It remains possible that KRAS mutation status in metastatic CRC could be a predictor of ICB resistance when mediated by IRF2 suppression. Our studies suggest the use of combination CXCR2 inhibitor with ICB therapy in patients with advanced CRC who do not respond to today’s standard of care immunotherapy.”

###

MD Anderson study team participants included Wenting Liao, Ph.D.; Adam Boutin, Ph.D.; Xiaoying Shang, Ph.D.; Di Zhao, Ph.D.; Prasenjit Dey,, Ph.D.; Jiexi Li; Guocan Wang, M.D., Ph.D.; Zhengdao Lan; Shan Jian, Ph.D.; Xingdi Ma; Peiwen Chen, Ph.D.; Deepavali Chakravarti, Ph.D.; Andrew Chang; Denise Spring, Ph.D.; and Y. Alan Wang, Ph.D., all of the Department of Cancer Biology; Jun Li, Ph.D.; Ming Tang, M.D., Ph.D.; and Jianhua Zhang, Ph.D., of the Department of Genomic Medicine; Riham Katkhuda, M.D.; and Dipen Maru, M.D., of the Department of Pathology; Michael Overman, M.D.; Krittiya Korphaisarn, M.D.; and Scott Kopetz M.D., Ph.D., of the Department of Gastrointestinal Medical Oncology; and Qing Chang, M.D., of the Institute for Applied Cancer Science.

Other participating institutions included Southern Medical University, Guangzhou, China; and Syntrix Pharmaceuticals, Auburn, Wash.

A full disclosure of conflicts of interest can be found with the full study.

The study was funded by the National Institutes of Health (CA084628 and 01 CA117969); the National Basic Research Program of China (2015CB554002); the National Natural Science Foundation of China (81672886, 81773101, and 81872401); and the Cancer Prevention and Research Institute of Texas (RP170067). The study was also supported with funding from the Colorectal Cancer Moon Shot™, part of MD Anderson’s Moon Shots Program™, a collaborative effort to accelerate the development of scientific discoveries into clinical advances that save patients’ lives.

Media Contact
Ron Gilmore
[email protected]

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.