• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Restoring hearing loss

Bioengineer by Bioengineer
March 19, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Utah engineers part of team to improve technology for the deaf

IMAGE

Credit: Dan Hixson/University of Utah College of Engineering

A team of worldwide researchers including engineers from the University of Utah have received a $9.7-million grant to design and develop a new implantable device and surgical procedure for the deaf that hopefully will cut through the noise and produce much more detailed sound than traditional hearing-loss treatments.

This new procedure involves the use of a new version of the Utah Electrode Array architecture, a brain-computer interfacbrae originally developed by University of Utah biomedical engineering Professor Emeritus Richard Normann that can send and receive electrical impulses from the brain. The version used here is a special variant of the Utah Slanted Electrode Array designed for use in peripheral nerves. Versions of the Utah Electrode Array are being further developed to allow amputees to move prosthetic limbs with their mind and, in this case, to hear higher-resolution sounds than with regular cochlear implants.

Since the mid-1980s, cochlear implants have been used to treat hundreds of thousands of deaf patients. It uses a tiny device implanted in the cochlea — a spiral cavity of the inner ear that produces nerve impulses from sound vibrations — to stimulate the auditory nerve. But the implants don’t work for everyone because of some patients’ anatomy or other malformations. And for those in which it does work, the sounds they hear may not be detailed, preventing them from distinguishing music or understanding voices in a noisy room, for example.

This new procedure, which is being funded by a five-year grant from the National Institutes of Health, could help those who are normally not candidates for cochlear implants, said University of Utah electrical and computer engineering professor Florian Solzbacher. That’s because the Utah Electrode Array assembly, a small (1.2 x 1.8 mm) silicon chip attached to a bundle of wires and connected to a stimulator device, is implanted directly to the patient’s auditory nerve as opposed to the cochlea.

“You have much higher resolution of sound, which means you can cover more individual frequencies and have better tonal range,” says Solzbacher, who is the lead U researcher working on the team. “That should allow you to get more realistic hearing.”

Another benefit of this technology is that the electrode array could be connected to existing hearing aids normally used in regular cochlear implants and does not require specially-designed devices. As a clinical product, the implanted array must be designed to last about 30 years in the body.

During the first three years of the grant, the team will develop the technology and surgical procedure and ensure it is safe and effective. The final two years will be devoted to implanting the devices on three patients with hearing loss who are normally not candidates for cochlear implants.

The team will be lead by researchers from the University of Minnesota and includes scientists from The Feinstein Institute for Medical Research, the research branch of Northwell Health, headquartered in Manhasset, New York; Hannover Medical School, a university medical center in Hannover, Germany; International Neuroscience Institute in Hannover, Germany; Hannover Clinical Trial Center in Germany; Salt Lake City-based Blackrock Microsystems LLC, an implantable neurotechnology device company that has been developing the Utah Electrode Array; and MED-EL, an Austrian manufacturer of medical devices for hearing loss.

Normann’s Utah Electrode Array, which he began developing in the 1980s, has also been used in a variety of research including for pain modulation, the development of a bionic eye that can help the blind see again, for bladder control, to regulate epilepsy, even for neural disorders such as Alzheimer’s.

###

Media Contact
Vincent Horiuchi
[email protected]

Tags: Biomechanics/BiophysicsBiotechnologyElectrical Engineering/ElectronicsHearing/SpeechTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.