• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A quick path to antimalarial resistance

Bioengineer by Bioengineer
March 4, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

P. falciparum parasites can develop drug resistance by epigenetic changes in clag3 gene expression

IMAGE

Credit: Mira et al, 2019

Resistance to antimalarial drugs is thought to result mainly from changes in the parasite’s genome. However, P. falciparum can also develop resistance to some antimalarial compounds by epigenetic changes, according to a new study led by ISGlobal, an institution supported by “la Caixa”, and the Institute of Tropical Medicine (ITM), Antwerp. This is of concern because resistance acquired at the epigenetic level can arise quickly, even during the course of a single infection.

P. falciparum, the most deadly malaria parasite, has developed resistance to all antimalarial drugs, including artemisinin combination therapies (ACTs), which are the current frontline treatment. Most of the known mechanisms by which P. falciparum parasites develop resistance to antimalarial drugs are due to changes in the genome. However, a team led by Alfred Cortés (ISGlobal) and Anna Rosanas-Urgell (ITM) explored the role of epigenetics (i.e. changes in gene expression that do not involve alterations in DNA sequence) in antimalarial drug resistance. Particularly, they looked at two parasite genes – clag3.1 and clag3.2 – whose expression is regulated by epigenetic mechanisms and that determine the activity of a channel called Plasmodial Surface Anion Channel (PSAC), which regulates the entry of nutrients and other molecules into red blood cells infected by the parasite. Previously, Cortés and his team had found that switches in the expression of clag3 led to changes in PSAC permeability and resistance to compounds toxic for the parasite.

In this study, the researchers investigated whether other antimalarial drugs require clag3 to reach their intracellular target and could consequently be prone to parasite resistance by epigenetic mechanisms. They found that certain compounds such as bis-thiazolium salts T3 and T16 require the product of clag3 genes to enter infected erythrocytes. Furthermore, P. falciparum populations could develop resistance to these compounds through the selection of parasites with reduced expression of both genes. In contrast, other compounds predicted to use transport pathways to enter infected erythrocytes, such as doxycycline, azithromycin or lumefantrine, did not require expression of clag3 genes for their anti-malarial activity.

“These results show that P. falciparum can develop resistance to certain antimalarial compounds by epigenetic changes in the expression of clag3 genes,” explains Sofia Mira, co-first author of the study together with Anastasia Pickford and Nuria Rovira. “These results are of relevance to drug development efforts, since resistance by epigenetic mechanisms can arise quickly, even during the course of a single infection,” adds Cortés. “It is also easily reversible, providing the parasite with an extraordinary level of plasticity.”

###

Media Contact
Adelaida Sarukhan
[email protected]

Original Source

https://www.isglobal.org/en/-/una-via-rapida-para-desarrollar-resistencia-a-antimalaricos

Related Journal Article

http://dx.doi.org/10.1128/AAC.00052-19

Tags: BiologyDisease in the Developing WorldInfectious/Emerging DiseasesParasitology
Share13Tweet7Share2ShareShareShare1

Related Posts

blank

Impact of Morphology and Location on Aneurysms

August 2, 2025
blank

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    40 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Morphology and Location on Aneurysms

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.