• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Organic electronics: Scientists develop a high-performance unipolar n-type thin-film transistor

Bioengineer by Bioengineer
March 1, 2019
in Science
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

–

IMAGE

Credit: Tsuyoshi Michinobu, Yang Wang

Researchers at Tokyo Institute of Technology (Tokyo Tech) report a unipolar n-type transistor with a world-leading electron mobility performance of up to 7.16 cm2 V-1 s-1. This achievement heralds an exciting future for organic electronics, including the development of innovative flexible displays and wearable technologies.

Researchers worldwide are on the hunt for novel materials that can improve the performance of basic components required to develop organic electronics.

Now, a research team at Tokyo Tech’s Department of Materials Science and Engineering including Tsuyoshi Michinobu and Yang Wang report a way of increasing the electron mobility of semiconducting polymers, which have previously proven difficult to optimize. Their high-performance material achieves an electron mobility of 7.16 cm2 V-1 s-1, representing more than a 40 percent increase over previous comparable results.

In their study published in the Journal of the American Chemical Society, they focused on enhancing the performance of materials known as n-type semiconducting polymers. These n-type (negative) materials are electron dominant, in contrast to p-type (positive) materials that are hole dominant. “As negatively-charged radicals are intrinsically unstable compared to those that are positively charged, producing stable n-type semiconducting polymers has been a major challenge in organic electronics,” Michinobu explains.

The research therefore addresses both a fundamental challenge and a practical need. Wang notes that many organic solar cells, for example, are made from p-type semiconducting polymers and n-type fullerene derivatives. The drawback is that the latter are costly, difficult to synthesize and incompatible with flexible devices. “To overcome these disadvantages,” he says, “high-performance n-type semiconducting polymers are highly desired to advance research on all-polymer solar cells.”

The team’s method involved using a series of new poly(benzothiadiazole-naphthalenediimide) derivatives and fine-tuning the material’s backbone conformation. This was made possible by the introduction of vinylene bridges[1] capable of forming hydrogen bonds with neighboring fluorine and oxygen atoms. Introducing these vinylene bridges required a technical feat so as to optimize the reaction conditions.

Overall, the resultant material had an improved molecular packaging order and greater strength, which contributed to the increased electron mobility.

Using techniques such as grazing-incidence wide-angle X-ray scattering (GIWAXS), the researchers confirmed that they achieved an extremely short π-π stacking distance[2] of only 3.40 angstrom. “This value is among the shortest for high mobility organic semiconducting polymers,” says Michinobu.

There are several remaining challenges. “We need to further optimize the backbone structure,” he continues. “At the same time, side chain groups also play a significant role in determining the crystallinity and packing orientation of semiconducting polymers. We still have room for improvement.”

Wang points out that the lowest unoccupied molecular orbital (LUMO) levels were located at -3.8 to -3.9 eV for the reported polymers. “As deeper LUMO levels lead to faster and more stable electron transport, further designs that introduce sp2-N, fluorine and chlorine atoms, for example, could help achieve even deeper LUMO levels,” he says.

In future, the researchers will also aim to improve the air stability of n-channel transistors — a crucial issue for realizing practical applications that would include complementary metal-oxide-semiconductor (CMOS)-like logic circuits, all-polymer solar cells, organic photodetectors and organic thermoelectrics.

###

Technical terms

[1] Vinylene bridges: Structures that are known to be effective spacers based on previous studies. These spacers had never been used in the context of polymers that were the focus of this study.

[2] π-π stacking distance: A measure of how far the charge needs to be carried within the material.

Related links

MICHINOBU Laboratory

New semiconducting polymers with record-setting electron mobility for future devices

Media Contact
Emiko Kawaguchi
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.8b12499

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Exchange Transfusion Impact on Severe Infant Pertussis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.