• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How fungi influence global plant colonisation

Bioengineer by Bioengineer
February 27, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International research team with Göttingen participation analyses impact on biodiversity

IMAGE

Credit: Holger Kreft

The symbiosis of plants and fungi has a great influence on the worldwide spread of plant species. In some cases, it even acts like a filter. This has been discovered by an international team of researchers with participation from the University of Göttingen. The results appeared in the journal Nature Ecology & Evolution.

In the colonisation of islands by plant species, it isn’t just factors like island size, isolation and geological development that play an important role, but also the interactions between species. The scientists found that the symbiosis of plant and fungus – the mycorrhiza – is of particular importance. The two organisms exchange nutrients via the plant’s fine root system: the fungus receives carbohydrates from the plant; the plant receives nutrients that the fungus has absorbed from the soil.

“For the first time, new data on the worldwide distribution of plant species in 1,100 island and mainland regions allows us to investigate the influence of this interaction on a global scale,” says Dr Patrick Weigelt from the University of Göttingen’s Department of Biodiversity, Macroecology and Biogeography, who worked on the study. The results: mycorrhiza-plant interactions, which are naturally less frequent on islands because the two organisms rely on each other, mean that the colonisation of remote islands is hindered. The lack of this symbiotic relationship may act like a brake on the spread of the plants. This is not the case for plant species introduced by humans, as fungi and plants are often introduced together. Head of Department, Professor Holger Kreft, adds, “The proportion of plant species with mycorrhiza interactions also increases from the poles to the equator”. One of the most prominent biogeographic patterns, the increase in the number of species from the poles to the tropics, is closely related to this symbiosis.

Dr Camille Delavaux, lead author from the University of Kansas (US), explains, “We show that the plant symbiotic association with mycorrhizal fungi is an overlooked driver of global plant biogeographic patterns. This has important consequences for our understanding of contemporary island biogeography and human-mediated plant invasions.” The results show that complex relationships between different organisms are crucial for understanding global diversity patterns and preserving biological diversity. “The absence of an interaction partner can disrupt ecosystems and make them more susceptible to biological invasions,” Weigelt stresses.

###

Original Publication: Camille S Delavaux et al. Mycorrhizal fungi influence global plant biogeography. Nature Ecology & Evolution (2019). DOI: 10.1038/s41559-019-0823-4.

Contact:

Dr Patrick Weigelt

University of Göttingen

Department of Biodiversity, Macroecology and Biogeography

Büsgenweg 1, 37077 Göttingen

Telephone: +49 (0)551 39-10443

Email: [email protected]

http://www.uni-goettingen.de/en/157014.html

Professor Holger Kreft

Telephone: +49 (0)551 39-10727

Email: [email protected]

http://www.uni-goettingen.de/en/218853.html

Media Contact
Melissa Sollich
[email protected]

Original Source

https://www.uni-goettingen.de/en/3240.html?id=5355

Related Journal Article

http://dx.doi.org/10.1038/s41559-019-0823-4

Tags: BiodiversityBiologyEarth ScienceEcology/EnvironmentGeographyMicrobiologyMycologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025
How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

October 7, 2025

Leafcutter Ants Have Blind Spots — Just Like Truck Drivers

October 7, 2025

Genetic Similarity Among Snow Leopards Raises Concerns for Their Future

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    920 shares
    Share 368 Tweet 230
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    94 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insufficient NNMT Disrupts Implantation via H3K9me3 Pathway

AI Diagnostic System Performance Evaluation in China

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.