• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Stem cells provide greater insight into rotator cuff disease

Bioengineer by Bioengineer
February 26, 2019
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR, Mich. – Rotator cuff tears are common injuries, and proper healing of the shoulder muscle is often difficult.

“Chronic tears often result in fat accumulation within the rotator cuff muscles, resulting in negative clinical outcomes, including weakening and atrophy of the muscles,” says Manuel Schubert, M.D., resident in orthopaedic surgery at Michigan Medicine. “It’s believed that this process of fat infiltration makes rotator cuff muscle damage one of the most difficult to rehabilitate after injury.”

Schubert explains that the process of fat accumulation following a tear appears to occur more frequently in rotator cuff muscles than other muscle groups.

But why this particular muscle set?

“We wanted to determine if there are cellular, molecular and genetic reasons for why rotator cuff muscles tend to develop this fat accumulation after injury,” he says.

In a new study, published in the Journal of Bone & Joint Surgery, Schubert and team used a mouse model to isolate specific stem cells, called satellite cells, in rotator cuff muscles, as well as calf muscles for comparison, to determine the extent of muscle and fat cells that develop from these satellite cells.

They then performed DNA-level studies to understand how the gene pathways of the muscles may differ.

“Even though the stem cells obtained from the rotator cuff muscles and the calf are thought to be the same kind of muscle stem cells, we wanted to determine if these cells are different in how their development is controlled,” Schubert says, “Which may provide insight for why fat tends to accumulate more in rotator cuff muscles.”

Key findings

The research team first obtained and isolated stem cells in each muscle to identify which cells develop into muscle cells and which develop into fat cells.

“The muscle stem cells from the rotator cuff developed into 23 percent fewer muscle cells and they showed an 87 percent decrease in a marker for muscle formation compared to the calf muscle stem cells,” Schubert says. “The rotator cuff stem cells also had a four- to 65-fold increase in markers of genes involved in fat cell generation.”

Next, the research team performed DNA-level studies in the stem cells from each muscle to examine gene activation.

“These studies identified 355 different regions of DNA between the stem cells from the rotator cuff and the calf muscle,” Schubert says. “Using a pathway enrichment analysis we found that the genes activated in the rotator cuff muscle were in regions related to fat metabolism and adipogenesis, or the formation of fat or fatty tissue.”

The research team notes that the activation of these regions suggests that the muscle stem cells from the rotator cuff have DNA that is programmed to more easily become fat cells.

“This study was the first of its kind to study DNA modification in the context of rotator cuff disease,” says Christopher Mendias, Ph.D., A.T.C., adjunct associate professor of orthopaedic surgery at Michigan Medicine. “It allowed us to gain insight into studying the nature of this common and debilitating condition, and it will set the stage for many additional studies.”

Future research

While further research is needed, this study provides insights into how future research in the rotator cuff could potentially lead to new therapeutic and clinical treatments.

“On the therapeutic side, for example, it may be possible in the future to take a patient’s own muscle stem cells from a muscle that heals better and with less fat formation than the rotator cuff muscles,” Schubert says. “During surgery, we could then transplant these stem cells from a muscle, such as the calf, to rotator cuff muscles and perhaps they could help the muscle heal with less fatty infiltration.”

Asheesh Bedi, M.D., professor and chief of sports medicine and the Michigan Center for Human Athletic Medicine and Performance (MCHAMP) at Michigan Medicine and one of the co-authors of the study, explains how the study could benefit patients he sees in clinic.

“This work provides the fundamental mechanistic explanation to what we see clinically,” he says. “When the muscle has changed, it can limit the outcome and return of strength even when we successfully repair the tear. Understanding this pathway gives us potential therapeutic pathways to augment our surgeries to help the muscle recover along with the healing tendon.”

The research team plans to continue its work into examining the rotator cuff. They currently have research underway to further study the nature of fat accumulation in patients with rotator cuff tears and understand how stem cells and immune cells work together to modify the muscle after injury.

###

Additional Michigan Medicine authors of the study include Andrew Noah, M.S., and Jonathan Gumucio, Ph.D.

Media Contact
Kylie Urban
[email protected]

Related Journal Article

https://labblog.uofmhealth.org/lab-report/stem-cells-provide-greater-insight-into-rotator-cuff-disease
http://dx.doi.org/10.2106/JBJS.18.00509

Tags: Medicine/HealthMusculatureOrthopedic MedicineSports Medicine
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.