• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Trinity and St. James’s Hospital report successful measurement of vitamin D in human hair

Bioengineer by Bioengineer
February 22, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study paves the way for improved diagnosis of vitamin D deficiency

Dublin, Thursday, February 21st, 2019 – A new study by researchers from Trinity College Dublin and St James’s Hospital has reported for the first time that vitamin D can be measured in human hair. The paper has been published in the international, peer-reviewed journal of human nutrition, Nutrients.

Vitamin D deficiency has reached epidemic proportions world-wide, with over 1 billion people estimated to be affected. Deficiency has been linked with bone health, but it could also be a risk factor for depression, cardiovascular disease, inflammation, diabetes and cancer. At present, the best way of assessing vitamin D is to measure the concentration of vitamin D in the blood. However, this can be painful, requires expertise and training along with hygienic conditions/equipment so getting a sample is not always workable. In addition, the blood result represents vitamin D status at a single time point, which is problematic because vitamin D changes with the seasons: it’s not uncommon for someone to be sufficient in vitamin D in the summer time, and very deficient in the winter. This means that a single snapshot of vitamin D status is not able to provide information on vitamin D year-round.

The current study is the first in the world to publish that it is possible to extract and measure vitamin D in human hair. This is a major step forward in assessing vitamin D status, potentially one of the major innovations in vitamin D measurement. Traditional blood analysis captures just a moment in time; in contrast, hair, which grows at approximately 1cm per month, could reflect vitamin D status over several months capturing the large seasonal differences in vitamin D status.

The lead author of the study, Associate Professor in Epidemiology, Trinity College Dublin, Lina Zgaga said:

“This study presents the first step towards the development of a novel test for assessing vitamin D status over time. The idea is that vitamin D is being deposited continuously in the hair as it grows; more might be deposited at times when vitamin D concentration in the blood is high, and less when it’s low. Therefore, test based on the hair sample might be able to give doctors a measure of vitamin D status over time – if hair is long enough, this even might be over a few years!

“Further research is needed to establish the exact relationship between vitamin D concentration in the blood and in hair over time. We also need to investigate different factors that might affect vitamin D levels in hair, the most obvious ones being hair colour and thickness, or use of hair products such as hair dye.”

Nutrition Research Fellow, Trinity College Dublin and co-author Dr Eamon Laird, added:

“Other applications could also include historical samples from archaeological sites. Hair (along with teeth) are some of the longest lasting surviving biological materials after death and thus it could be possible to for the first time assess the vitamin D status of historical populations – Elizabethans, Viking, Celtic, Roman, ancient Chinese, Egyptian. Similarly, hair samples could also be used to assess longer-term vitamin D status in animals with applications to farming. The vitamin D status of ancient species could be measured given the well preserved and copious amounts of for example mammoth or ancient ice age animal hair that is often found from the warming permafrost and in museum specimens.”

Principal Biochemist from the Biochemistry Department in St. James’s Hospital and co-author Dr Martin Healy said:

“The presence of vitamin D in hair could be interpreted as a personal record of a person’s vitamin D status. Having a knowledge of an individual’s long-term vitamin D status through analysis of hair samples may allow for better strategies to maintain stable and adequate vitamin D concentrations over an extended period”.

“The finding that vitamin D can be measured in hair samples potentially opens up a new approach to epidemiological studies relating the vitamin to bone and non-bone related medical conditions which have been associated with its deficiency.”

###

Paper has been published in Nutrients journal at: https://www.mdpi.com/2072-6643/11/2/423

Media contact:

Prof Lina Zgaga, Associate Professor of Epidemiology, Trinity College Dublin, at [email protected] or Tel: +353-1-896 1545.

Dr Eamon Laird, Research Fellow, TILDA, Trinity College Dublin, at [email protected] or Tel: +353-1-896 4342 / +353-85 102 2120

Dr Martin Healy, Principal Biochemist, St James’s Hospital Dublin, at [email protected]

Ciara O’Shea, Media Relations Officer, Trinity College Dublin, at [email protected] Tel: +353-1- 896 4685

Media Contact
Lina Zgaga
[email protected]
353-189-61545
http://dx.doi.org/10.3390/nu11020423

Tags: Clinical TrialsDiagnosticsDiet/Body WeightMedicine/HealthNutrition/NutrientsPublic Health
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.