• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New wheelchair design: A hand gear for better ergonomics

Bioengineer by Bioengineer
February 13, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using biomedical modelling, researchers at TU Wien have developed a completely new type of wheelchair; specially designed handles make the drive more efficient and ergonomic

IMAGE

Credit: TU Wien

Anyone who thinks that a wheelchair is a simple piece of equipment with no room for improvement is sorely mistaken. The research team for biomechanics and rehabilitation engineering at TU Wien (Vienna) has now developed a completely new drive system. The wheelchair is not moved via a handrim on the wheel, but with the help of a newly designed hand gear. This is more ergonomic and far better suited to the natural movement patterns of the upper body. The new wheelchair type has recently been registered for a patent, now the researchers are looking for industrial partners.

Joints are not made for wheelchair use

“The motion sequence when using a wheelchair is usually quite unnatural”, explains Prof. Margit Gföhler (Institute of Engineering Design and Product Development, TU Wien). “Moving a wheelchair using a conventional handrim puts your joints into extreme positions, which our bodies are simply not made for.” This is the reason why many people suffer from wheelchair-induced joint injuries and joint pain.

To change this, Margit Gföhler and her research team developed a biomechanical computer model to analyse various motion sequences of the upper body. “We considered the following questions: What would be the optimal motion sequence? What movements are best suited to the way in which the shoulders and arms work?” says Gföhler.

The motion sequence determined to be best suited in the biomechanical simulations was then implemented in a mechanical drive system. The result is a wheelchair driven by two hand gears. During each revolution, the levers change their length, creating an egg-shaped movement rather than a circular movement. The hand gears are mounted on the wheelchair’s armrests and drive the rear wheels via a toothed belt. As a result, the wheels can be made smaller than usual. Thanks to its compact dimensions, the hand gear does not make the wheelchair wider or larger, so the drive is suitable for everyday indoor use.

Better angles, less effort

The new wheelchair technology underwent a range of tests, some of them in collaboration with the ‘Weißer Hof’ rehabilitation centre in Klosterneuburg, Austria. “The responses were very positive: people were pleased that the joints no longer have to move outside the natural angular range and that the wheelchair enables continuous movement without interruption”, relates Margit Gföhler. Spirometric tests were also carried out: these involve analysing the breath to measure how strenuous a certain activity is. The new drive technology enables the same speeds to be reached as before but with significantly reduced effort.

Margit Gföhler is optimistic, “Our new wheelchair concept really could improve many people’s quality of life.” “We hope to find a partner in the industry soon to develop our design into a commercial product.” The new wheelchair drive system has now been registered for a patent with the help of TU Wien’s Research and Transfer Support office.

###

Contact:

Prof. Margit Gföhler

Institute of Engineering Design and Product Development

TU Wien

Getreidemarkt 9, 1060 Vienna, Austria

Tel.: +43-1-58801-30615

[email protected]

Media Contact
Florian Aigner
[email protected]
43-155-801-41027

Original Source

https://www.tuwien.ac.at/en/news/news_detail/article/126523/

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMechanical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.