• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Periodic table still influencing today's research

Bioengineer by Bioengineer
February 7, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by MSU


EAST LANSING, Mich. – This year marks the 150th anniversary of the Periodic Table, and the principles that drove Dmitri Mendeleev to construct his table are still influencing today’s research advances.

In a special issue of Science, which celebrates this sesquicentennial anniversary, a Michigan State University scientist highlights some of the current research around the globe driven by Mendeleev’s influence.

“Our goal was to showcase contemporary research being pursued around the world, including U.S. Department of Energy-supported research at MSU, that’s working to realize new approaches to photoinduced chemical processes,” said James McCusker, MSU chemist and review author.

McCusker’s contribution focused on the process of light absorption that incorporates elements from the so-called “transition block” of the Periodic Table. Compounds from this class are involved in everything from solar energy conversation to organic synthesis.

“The effective capture and use of sunlight – an inexhaustible, globally accessible and pollution-free energy source – is critical for replacing fossil fuels and in mitigating climate change,” McCusker said. “In order to realize this goal, one of the key processes that must occur following the absorption of light is the transfer of electrons, similar to what plants do in photosynthesis.”

But unleashing this capability has proved challenging. That’s due, in part, to the fact that the compounds that are very effective at converting light into useable charge require the use of some of the least-abundant elements on the planet. Take for example ruthenium and iridium, which are widely employed in chromophores that can carry out these light-enabled chemical processes.

“Ruthenium is one of the five or six least-abundant elements in Earth’s crust and is simply not a viable option as the light-harvesting component for a globally scaled problem like solar fuel production,” McCusker said. “We need to find replacements that are abundant on Earth, such as iron, to make global scalability possible. This is not an engineering or manufacturing problem, but one of fundamental science that has its origins in the very concepts that Mendeleev uncovered when he constructed the periodic table.”

That’s where some of MSU’s DOE-supported research comes into play. McCusker’s research is based on a confluence of synthetic organic and inorganic chemistries as well as a range of spectroscopic techniques.

“Of particular importance with regard to our solar energy conversion efforts is ultrafast time-resolved laser spectroscopy, which allows us to track the evolution of a chemical system less than one trillionth of a second after light has been absorbed,” McCusker said. “The ability to combine synthesis and ultrafast spectroscopy in one laboratory is a critically important aspect of the research since it allows my students and I to make immediate connections between the composition of the molecules we prepare and their light-induced properties.”

The outlook for this field is strong, he added.

“Although much remains to be done, an understanding of the periodic nature of the problem coupled with the creative work by a growing number of research groups around the world portends that the prospect for a seismic shift in how we interface molecular inorganic chemistry to the science of light capture and conversion is bright indeed,” McCusker said.

###

(Editor’s note: Please include a link to the original paper in online coverage: http://science.sciencemag.org/content/363/6426/484.)

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact
Layne Cameron
[email protected]
517-353-8819

Original Source

https://msutoday.msu.edu/news/2019/periodic-table-still-influencing-todays-research/

Related Journal Article

http://dx.doi.org/10.1126/science.aav9104

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsBiochemistryChemistry/Physics/Materials SciencesGeophysicsMolecular PhysicsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.