• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, February 4, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Leuven experts push the boundaries of 3D microscopy

Bioengineer by Bioengineer
January 16, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two newly developed methods will help researchers to study the 3D structure of complex surfaces and of individual neurons better than ever before. Sebastian Munck and Natalia Gunko, two expert technologists at VIB-KU Leuven, report new imaging protocols that will advance neuroscience and (bio)imaging in general.

The biotech R&D sector is thriving in Flanders, and this is in no small part due to presence of a lot of tech development and know-how, enabling scientists to carve out a path towards new insights and therapies. This month, two colleagues at VIB and KU Leuven report on new ways to study 3D surfaces and the 3D ultrastructure of brain cells.

From Lego to flies: ALMOST allows unprecedented 3D surface imaging

Recent developments in 3D microscopy have revolutionized biomedical research by enabling the imaging of whole model organisms such as zebrafish and fruit fly larvae as well as cleared mouse embryos and organs. In many cases, however, this requires making a sample transparent using chemical ‘clearing’ methods, says light microscopy expert Sebastian Munck (VIB-KU Leuven): “Clearing methods are time intensive and can’t be applied to every type of sample. Moreover, if you want to study surface morphology or color, optically clearing is counterproductive.”

That is why Munck and his team developed “ALMOST”, an optical method for 3D surface imaging of reflective opaque objects. Munck: “ALMOST stands for A Label-free Multicolor Optical Surface Tomography method. It provides a 3D surface reconstruction of non-transparent samples, including information on its color and reflective properties.”

Munck believes that many research fields will benefit from this straightforward way of documenting and quantifying 3D surfaces, as ALMOST can be applied to both biological and non-biological samples: “The ability to record the surface of a medium-sized object in 3D opens perspectives for digital repositories of zoological and botanical collections and enables a link to 3D printing of these objects. From pigment analysis to virtual reality, or even art, the possibilities are endless.”
The scientists neatly illustrate this by imaging not only biological samples such as fruit flies and seed cones, but also Lego figurines.

From silver to gold: optimizing a century-old method to study neurons in more detail

In the late 19th century, Camillo Golgi developed a method to stain the long protrusions of individual brain cells in what he called “the black reaction”. Now referred to as the Golgi method, the protocol has been refined over the years and proved instrumental for many groundbreaking advances in neurobiology. Nevertheless, it also has some important drawbacks, according to Natalia Gunko (VIB-KU Leuven): “Golgi staining techniques are still widely used in research and clinical diagnostics, but they are incompatible with further studies of the subcellular architecture of neurons with electron microscopy due to the formation of large, electron-dense silver deposits that mask ultrastructural details.”

To solve this problem, Gunko and her team adapted the Golgi method for electron microscopy by replacing silver salts with gold salts, resulting in far smaller particles that are often deposited at the periphery of neurons.

“It’s the first successful use of a Golgi-based staining technique for tracing neurons over their entire length, preserving the ultrastructural details,” says Gunko, who immediately applied the technique to study neuronal ultrastructure in an Alzheimer’s disease model.

“We combined the Golgi staining with fluorescent labeling and tissue clearing to visualize spatial relationships between entire neurons and amyloid plaques in brain samples of an Alzheimer’s mouse model.” This is but one example of the use of the new method in fundamental neuroscience and the study of neuronal morphology in brain disease.

###

Publications

A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging 1 method for nontransparent 3D samples, Kerstens et al. 2019 BMC Biology

Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons, Vints et al. 2019 Scientific Reports

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact
Sooike Stoops
[email protected]
32-924-46611

Tags: BiologyBiotechnologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Enhancing ssDNA Templates for CRISPR Gene Editing

February 4, 2026
Adaptive Decision-Making in Naïve Animals: A Novel Unsupervised Model Inspired by Baby Chicks, Turtles, and Insects

Adaptive Decision-Making in Naïve Animals: A Novel Unsupervised Model Inspired by Baby Chicks, Turtles, and Insects

February 4, 2026

How Urban Environments Enabled Spotted Lanternflies to Flourish in the US

February 4, 2026

Study Reveals How Urban Light Pollution Disrupts Nighttime Hormones in Sharks

February 3, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    158 shares
    Share 63 Tweet 40
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Renal Doppler’s Impact on Pediatric Nephrotic Syndrome

Tackling Bias and Oversight in Clinical AI

Minimally Invasive Luciferases for Precise Tumor Tracking

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.