• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Assessing the performance of multiple influenza forecasting models

Bioengineer by Bioengineer
January 15, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UMass Amherst biostatistician, national team assess flu forecast models

IMAGE

Credit: UMass Amherst


AMHERST, Mass. – In what the authors believe is the first documented comparison of several real-time infectious disease forecasting models by different teams across many seasons, five research groups report this week that a majority of models consistently showed higher accuracy than historical baseline models.

Led by biostatistician Nicholas Reich at the University of Massachusetts Amherst, the research teams formed a consortium called the FluSight Network and compared the forecast accuracy of 20 models compared to a historical baseline seasonal average. Accurately predicting the size and timing of infectious disease outbreaks helps public health officials in planning appropriate responses, they say.

Reich, at the School of Public Health and Health Sciences at UMass Amherst, says this paper, the first of several planned from this research consortium, offers “a survey of which models do well, when and why, plus a sort of meta-analysis of the state of the field right now. We have brought together some of the top flu forecasting teams in the world, and through this collaboration have enabled an apples-to-apples comparison of our different methods and results.” Details appear in the current online edition of Proceedings of the National Academy of Sciences.

He and colleagues write, “Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness one, two and three weeks ahead of available data and when forecasting the timing and magnitude of the seasonal peak.”

Influenza infects an estimated 9 million to 35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually, the researchers point out. More than 6 million Americans have already caught influenza this flu season, Reich adds, and as many as 80,000 have ended up in the hospital, federal health officials reported most recently last Friday.

In addition to comparing the contributed models, the efforts of the FluSight Network has enabled the creation of an “ensemble” model. Each group uses their own advanced analytical techniques, Reich explains, to come up with a forecasted flu trajectory for the year. These individual forecasts are combined into a single “ensemble” forecast that is sent to the CDC each week.

When compared to historical trends, these forecasts help the CDC and other public health officials more effectively plan and respond to the evolving seasonal epidemic. The FluSight Network ensemble was one of the top-performing real-time models in the 2017/2018 season. The CDC uses the FluSight Network ensemble approach in their internal and external communication and planning for the influenza season. Peer-reviewed research on the ensemble model is forthcoming, says Reich.

Overall, the authors state, “Our collaborative, team science approach highlights the ability of multiple research groups working together to uncover patterns and trends of model performance that are harder to observe in single-team studies.”

“The field of infectious disease forecasting is in its infancy and we expect that innovation will spur improvements in forecasting in the coming years,” they add. “Public health officials are still learning how best to integrate forecasts into real-time decision making. Close collaboration between public health policy-makers and quantitative modelers is necessary to ensure that forecasts have maximum impact and are appropriately communicated to the public and the broader public health community.”

Reich worked with colleagues at Carnegie Mellon University, the University of Texas at Austin, the U.S. Centers for Disease Control and Prevention (CDC), Columbia University, Los Alamos National Laboratory and Mount Holyoke College on the project.

The researchers note that in the past 15 years, increased interest in forecasting infectious disease has been fueled in part by the promise of “big data,” and the idea that new data streams could lead to measurable improvements in how disease transmission is measured, forecast and controlled. “While multi-model comparisons exist in the literature for single-outbreak performance, here we compare a consistent set of models over seven influenza seasons,” 2010 through 2017.

###

Media Contact
Janet Lathrop
[email protected]
413-545-2989

Related Journal Article

http://dx.doi.org/10.1073/pnas.1812594116

Tags: Algorithms/ModelsHealth CareInfectious/Emerging DiseasesMedicine/HealthPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Mapping Human Thalamocortical Links via Electrical Stimulation

August 3, 2025
blank

Trans-Synaptic Spread of Tau in PSP Uncovered

August 3, 2025

Motor Interventions Improve Children’s Coordination: New Study

August 3, 2025

Tau PET Positivity Varies by Age, Genetics, and Sex

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    51 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microplastic Quantification with NMR Spectroscopy

Elranatamab Outperforms UK Real-World Myeloma Treatments

Mapping Human Thalamocortical Links via Electrical Stimulation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.