• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

How drugs can minimize the side effects of chemotherapy

Bioengineer by Bioengineer
January 10, 2019
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Zurich have determined the three-dimensional structure of the receptor that causes nausea and vomiting as a result of cancer chemotherapy. The study explains for the first time why some drugs work particularly well in ameliorating these side effects. The results also provide important insights into how to develop compounds to effectively tackle other disorders.

Most cancer patients who have to undergo chemotherapy treatment worry about the associated side effects, especially nausea and vomiting. The cause of these unpleasant effects is a receptor in the brain which is normally activated by the neurokin 1 receptor. During chemotherapy, this receptor is greatly overstimulated. The same receptor also plays a central role in many other medical problems – such as migraine, perception of pain and pruritus (severe itching).

Ever since the receptor was discovered thirty years ago, teams around the world have worked on finding effective and lasting inhibitors. Until now, though, success was limited: While many compounds showed strong activity in the test tube, only very few of them worked in patients. There was no clear explanation as to why this was the case.

Three-dimensional analysis of the structures explains how they work

A team of researchers at the UZH Department of Biochemistry, led by Prof. Andreas Plueckthun, has now managed to solve this mystery. They examined what the three-dimensional structure of the receptor looked like when two effective drugs – EmendTM; (aprepitant) und AkynzeoTM; (netupitant) – were used. They compared this with the use of an early compound that was only active in the test tube. “We could directly see how the effective drugs altered some parts of the receptor such that the drugs could not easily escape anymore,” explains PhD candidate Jendrik Schoeppe, who carried out the structural analyses. “The earlier compound fit just as well onto the receptor but could still quickly leave it.”

New solutions for other medical problems

This study helped the biochemists to exactly determine which chemical structures of the drugs enable a long-lasting attachment to the receptor and thus a durable effect. “This result provides important insights on how to make such highly potent compounds in the future,” says Plueckthun. Until now, a multitude of other disorders influenced by this receptor (though other receptors also play a role), such as migraine, asthma and gastrointestinal disorders, as well as inflammation and depression, could not yet be tackled with efficient treatments. “The detailed understanding of the receptor structure and inhibition mechanism may now give this research a new boost,” hopes Plueckthun.

A better understanding of the long-term effects

The researchers believe that their findings may also be useful in the search for compounds that could be effective on other receptors. The direct comparison of the different drugs binding to the same receptor also gives important clues about what general features define a long-acting clinically successful drug. “We could only find this out because we could directly see the structure in such high detail, and this in turn only became possible through the directed evolution and protein engineering methods we have developed over the last few years,” explains Andreas Plueckthun. “This was a long-term investment that paid off.”

###

Media Contact
Andreas Plueckthun
[email protected]
41-446-355-570

Related Journal Article

https://www.media.uzh.ch/en/Press-Releases/2019/receptor-structure.html
http://dx.doi.org/10.1038/s41467-018-07939-8

Tags: BiochemistrycancerChemistry/Physics/Materials SciencesMedicine/HealthMolecular BiologyneurobiologyNeurochemistryPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Targeting Dormant Tumor Cells: A New Frontier in Cancer Treatment

Targeting Dormant Tumor Cells: A New Frontier in Cancer Treatment

August 8, 2025
blank

Neural Networks vs. Experts: Classifying Renal Ultrasounds

August 8, 2025

Rare Case: Tracheal Bronchus Complicates Pulmonary Agenesis

August 8, 2025

Breakthrough Discoveries: MSK Research Highlights – August 8, 2025

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    133 shares
    Share 53 Tweet 33
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Environmental and Migration Effects on Bird Parasites

Enhancing MOFs with Lithium Salts for Superior Batteries

Targeting Dormant Tumor Cells: A New Frontier in Cancer Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.