• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

3D printed prosthetic hand can guess how you play rock, paper, scissors

Bioengineer by Bioengineer
June 27, 2019
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new 3D-printed prosthetic hand can learn the wearers’ movement patterns to help amputee patients perform daily tasks, reports a study published this week in Science Robotics.

Credit: Hiroshima University Biological Systems Engineering Lab

Losing a limb, either through illness or accident, can present emotional and physical challenges for an amputee, damaging their quality of life. Prosthetic limbs can be very useful but are often expensive and difficult to use. The Biological Systems Engineering Lab at Hiroshima University has developed a new 3D printed prosthetic hand combined with a computer interface, which is their cheapest, lightest model that is more reactive to motion intent than before. Previous generations of their prosthetic hands have been made of metal, which is heavy and expensive to make.

Professor Toshio Tsuji of the Graduate School of Engineering, Hiroshima University describes the mechanism of this new hand and computer interface using a game of “Rock, Paper, Scissors”. The wearer imagines a hand movement, such as making a fist for Rock or a peace sign for Scissors, and the computer attached to the hand combines the previously learned movements of all 5 fingers to make this motion.

“The patient just thinks about the motion of the hand and then the robot automatically moves. The robot is like a part of his body. You can control the robot as you want. We will combine the human body and machine like one living body.” explains Tsuji.

Electrodes in the socket of the prosthetic equipment measure electrical signals from nerves through the skin– similar to how an ECG measures heart rate. The signals are sent to the computer, which only takes five milliseconds to make its decision about what movement it should be. The computer then sends the electrical signals to the motors in the hand.

The neural network (named Cybernetic Interface), that allows the computer to “learn”, was trained to recognize movements from each of the 5 fingers and then combine them into different patterns to turn Scissors into Rock, pick up a water bottle or to control the force used to shake someone’s hand.

“This is one of the distinctive features of this project. The machine can learn simple basic motions and then combine and then produce complicated motions.” Tsuji says.

Hiroshima University Biological Systems Engineering Lab tested the equipment with patients in the Robot Rehabilitation Center in the Hyogo Institute of Assistive Technology, Kobe. The researchers also collaborated with the company Kinki Gishi to develop the socket to accommodate the amputee patients’ arm.

Seven participants were recruited for this study, including one amputee who had worn a prosthesis for 17 years. Participants were asked to perform a variety of tasks with the hand that simulated daily life, such as picking up small items, or clenching their fist. The accuracy of prosthetic hand movements measured in the study for single simple motion was above 95 %, and complicated, unlearned motions was 93%.

However, this hand is not quite ready for all wearers. Using the hand for a long time can be burdensome for the wearer as they must concentrate on the hand position in order to sustain it, which caused muscle fatigue. The team are planning on creating a training plan in order to make the best use of the hand and hope it will become an affordable alternative on the prosthetics market.

###

Since its foundation in 1949, Hiroshima University has strived to become one of the most prominent and comprehensive universities in Japan for the promotion and development of scholarship and education. Consisting of 12 schools and 11 graduate schools, ranging from International Development and Cooperation to Integrated Arts and Sciences, the university has grown into one of the most distinguished research universities in Japan. English website: https://www.hiroshima-u.ac.jp/en

Media Contact
Norifumi Miyokawa
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/scirobotics.eaaw6339

Tags: Biomechanics/BiophysicsMechanical EngineeringMedicine/HealthPhysiologyResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.