• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

3D microchannels promote self-assembly of ordered emulsions at low droplet concentrations

Bioengineer by Bioengineer
June 6, 2019
in Science
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SUTD

Self-assembly is the process by which simple building blocks interact and organize themselves into ordered structures. Nature abounds with fascinating examples of self-assembled structures. Inspired by nature, researchers have long sought to exploit self-assembly as a “bottom-up” fabrication technique to engineer complex materials and devices. Currently, the self-assembly of ordered emulsions has elicited much interest for its potential application in multiple fields such as material synthesis and high throughput analysis.

Microfluidic techniques offer the ability to generate and self-assemble highly monodisperse droplets into ordered emulsions in a single device, but self-assembly in microfluidic flows typically requires high droplet density. A team of researchers led by Assistant Professor Michinao Hashimoto from the Singapore University of Technology and Design (SUTD) has discovered an elegant way to achieve self-assembly of low density droplets in microfluidic flows using three dimensional (3D) microchannels.

In contrast to previous studies which used microchannels with no variations in height, the researchers at SUTD used a microchannel with a gradual increase in height. In such 3D microchannels, the droplets, unconfined by the top or bottom walls and driven by a density difference with the surrounding liquid, either sink to the bottom of the microchannel or float to the top of microchannel. They then accumulate, jam and self-assemble into ordered structures. The research team demonstrated that self-assembly into 2D lattices could be achieved when droplets occupied just 5% of the total volume of liquid injected into the microchannel; and by gradually increasing the droplet concentration beyond that, self-assembly into 3D lattices could be achieved. To further demonstrate the potential of their discovery the researchers used self-assembled 2D lattices of droplets as a template to fabricate millimeter wide hydrogel fibers with anisotropic pore structures.

“The simplicity and versatility of the concept–the use of 3D microfluidics for the controlled self-assembly of droplets–should be of interest to researchers exploring the interface between microfluidics, self-assembly, and soft matter” said Dr. Pravien Parthiban, a postdoctoral fellow at SUTD and the lead author involved in the work.

###

This research work was conducted in collaboration with Professor Patrick S. Doyle in Department of Chemical Engineering at Massachusetts Institute of Technology (MIT). The research finding has recently been published in Soft Matter where it has been showcased on the back cover (Soft Matter, 2019, 15, 4244 – 4254).

Media Contact
Melissa Koh
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/C8SM02305K

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.