• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 24, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Zooplankton rapidly evolve tolerance to road salt

Bioengineer by Bioengineer
January 6, 2017
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rensselaer Polytechnic Institute

A common species of zooplankton–the smallest animals in the freshwater food web–can evolve genetic tolerance to moderate levels of road salt in as little as two and a half months, according to new research published online today in the journal Environmental Pollution. The study is the first to demonstrate that the animals can rapidly evolve higher tolerance to road salt, and indicates that freshwater ecosystems may possess some resilience in the face of a 50-fold increase in road deicing salt applications since the 1940s.

"These animals evolved tolerance in just two and a half months. That's a really short time period, far faster than we often think of evolution happening," said Rick Relyea, lead researcher and a professor of biological sciences at Rensselaer Polytechnic Institute. "The hopeful message here is that, to some degree, zooplankton can evolve a higher tolerance to salt than is found in pristine wetlands and lakes and, in turn, help protect these ecosystems from the impacts of salt."

The research is part of the Jefferson Project at Lake George–a collaboration between Rensselaer, IBM Research, and The FUND for Lake George–founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world. Relyea is director of the Jefferson Project and the David M. Darrin '40 Senior Endowed Chair at Rensselaer.

The use of deicing road salts has increased from .28 million metric tons per year in the 1940s to over 16 million metric tons per year today. As part of the Jefferson Project, the Relyea lab is conducting a suite of experiments to test the effects of road salt on ecosystems. Recent research was reported in an article in the Canadian Journal of Fisheries and Aquatic Sciences, which found that high levels of road salt can alter the sex ratios of frogs; an article in Environmental Toxicology and Chemistry, which documented the effects of road salt and a common insecticide on wetland food webs; and an article in Environmental Pollution, which examined potential interactions between road salt, predators, and competitors in wetland food webs.

In the newly published work, researchers tested whether a common species of zooplankton, Daphnia pulex, could evolve increased tolerance to road salt. Daphnia pulex is vital to freshwater ecosystems. It is a major consumer of algae and a preferred food source for many fish species. Water quality suffers in ecosystems where Daphnia populations have declined, and the loss of Daphnia can have cascading effects through the food web. For example, a lack of healthy zooplankton populations can trigger harmful algal blooms.

Using 1,200-liter tanks outfitted to mimic lake ecosystems, researchers exposed Daphnia to five levels of road salt (sodium chloride) ranging from a relatively low concentration of 15 milligrams chloride per liter (the current Lake George concentration) to a high concentration of 1,000 milligrams per liter (mimicking highly contaminated lakes in North America). After two and a half months, about five to 10 generations in Daphnia, the researchers collected the Daphnia from each tank and raised their progeny for three generations under low salt concentrations.

Researchers then studied how well the descendants of the different populations fared when subsequently exposed to road salt, from 30 to 1,900 milligrams per liter, for 48 hours. At the intermediate salt concentrations, populations previously exposed to elevated concentrations of salt had higher rates of survival than populations previously exposed to natural concentrations of salt. For example, when exposed to 1,300 milligrams per liter, descendants of Daphnia previously exposed to 250 milligrams per liter experienced 92 percent survival whereas descendants of Daphnia previously exposed to 15 milligrams per liter experienced only 46 percent survival.

"At the highest concentrations of salt, none of the zooplankton survived. But under moderate concentrations, much higher than those found in Lake George, these zooplankton evolved higher tolerance," said Relyea. "This is the first study to demonstrate that zooplankton can evolve increased tolerance to road salt, and the results were quite unexpected."

In follow-up research, the Relyea lab is testing whether Daphnia with evolved tolerance to road salt protect the food web against future road salt contamination. The team is also examining how evolved tolerance affects other aspects of Daphnia, such as their growth, reproduction, or life span.

###

The article, "Rapid evolution of tolerance to road salt in zooplankton," by Kayla D. Coldsnow et. al. (doi: 10.1016/j.envpol.2016.12.024) appears in Environmental Pollution (2017), published by Elsevier. Authors also included Brian M. Mattes and William D. Hintz.

At Rensselaer, this research fulfills the vision of The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so complex, they cannot be addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration — working with partners across disciplines, sectors, and geographic regions, to address global challenges — and addresses some of the world's most pressing technological challenges, from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.

About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has been defining the scientific and technological advances of our world. Rensselaer faculty and alumni represent 84 members of the National Academy of Engineering, 17 members of the National Academy of Science, 25 members of the American Academy of Arts and Sciences, 8 members of the National Academy of Medicine, 7 members of the National Academy of Inventors, and 4 members of the National Inventors Hall of Fame, as well as a Nobel Prize winner in Physics. With 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century–to change lives, to advance society, and to change the world. To learn more, go to http://www.rpi.edu.

Media Contact

Mary Martialay
[email protected]
@rpinews

http://news.rpi.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Robot Bias

Flawed AI makes robots racist, sexist

June 24, 2022
Defibrillation Teleportation

Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias

June 24, 2022

Nanomaterials that provide imaging while delivering medication

June 24, 2022

Novel sewage treatment system removes up to 70% of nitrogen that would otherwise be discarded into nature

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    36 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Dutch researchers teleport quantum information across rudimentary quantum network

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUrogenital SystemViolence/CriminalsVehiclesZoology/Veterinary ScienceVaccinesWeaponryVirologyUniversity of WashingtonVaccineWeather/StormsUrbanization

Recent Posts

  • Flawed AI makes robots racist, sexist
  • Spiral wave teleportation theory offers new path to defibrillate hearts, terminate arrhythmias
  • Nanomaterials that provide imaging while delivering medication
  • Novel sewage treatment system removes up to 70% of nitrogen that would otherwise be discarded into nature
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....