• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Young Investigator Award

Bioengineer by Bioengineer
March 8, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UD engineering professor honored for excellence in molecular beam research

IMAGE

Credit: Photo by Evan Krape

Periods of history are often defined by the materials used to make critical tools — from the stone age to the bronze age to today — a period some experts regard as the silicon age. Silicon is used in semiconductors and other technologies that are critical for computing and communications. The development of sophisticated new materials could accelerate further societal progress.

A University of Delaware professor is being recognized as a leading expert in molecular beam epitaxy, a technique used to make promising, novel materials.

Stephanie Law, associate professor of materials science and engineering and co-director of the UD Materials Growth Facility, received the Young Investigator Award from the 21st International Conference on Molecular Beam Epitaxy 2020.

Molecular beam epitaxy is a method used to grow materials, such as crystals or thin films, by depositing layers of molecules or atoms one at a time. Molecular beam epitaxy enables the creation of novel, precisely designed materials for use in many applications, such as ultra-sensitive gas sensing or new qubits for quantum computing.

Law was selected for the Young Investigator Award from the 21st International Conference on Molecular Beam Epitaxy 2020 for advances in the growth of novel optical materials including heavily doped semiconductors, topological insulators, and other van der Waals materials. She was selected for this award by leaders in the field of molecular beam epitaxy — and she is fast becoming a world leader in the subject herself.

Her research group focuses on improving the quality of materials used for infrared and terahertz optics and plasmonics. “The techniques we have developed for good material growth are applicable to a wide range of related systems,” she said.

What’s more, exciting new possibilities are on the horizon. The Materials Growth Facility at UD, which already features an array of world-class equipment for nanofabrication, growth characterization and monitoring, microscopy and calibrations, is expanding. New funding through UD’s Center for Hybrid, Active and Responsive Materials, an NSF-funded Materials Research Science and Engineering Centers (MRSEC), will enable the purchase of a new sputtering system. Funds from a private foundation will enable the purchase of a new electron beam evaporator.

“These are significant new capabilities that will allow us to grow new materials and complex material stacks for applications in infrared and terahertz optics, quantum materials, and hybrid devices,” said Law.

Law will accept the Young Investigator Award and share highlights from her research group in a presentation at the next International Conference on Molecular Beam Epitaxy, slated to be held in September 2021 in Mexico.

This accolade is one of many for Law, a widely recognized scholar in molecular beam epitaxy. She has been honored with the Peter Mark Memorial Award from the American Vacuum Society (2019), Presidential Early Career Award for Scientists and Engineers (2019), Early Career Award from the U.S. Department of Energy (2017) and North American Molecular Beam Epitaxy Young Investigator Award (2016).

Law earned her doctorate in physics at the University of Illinois at Urbana-Champaign in 2012 and did postdoctoral research there in electrical and computer engineering before joining the UD faculty in 2014.

Law describes creating materials of tomorrow one atom at a time in this video.

###

Media Contact
Peter Kerwin
[email protected]

Original Source

https://www.udel.edu/udaily/2021/march/stephanie-law-young-investigator-award-molecular-beam-epitaxy/

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Complex Chromosomal Insertions with Karyotyping

Enhanced Coherent Ranging via Phase-Multiplied Interferometry

Adaphostin Triggers Oxidative Stress in Esophageal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.