• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

WVU engineer aims to improve profitability and flexibility of coal-fired power plants using AI

Bioengineer by Bioengineer
September 17, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Paige Nesbit/West Virginia University

One West Virginia University chemical engineer is tapping into artificial intelligence to prolong the lives of power plant boilers.

Debangsu Bhattacharyya, GE Plastics Material Engineering Professor of chemical and biomedical engineering, received a $2.5-million U.S. Department of Energy grant to develop an online monitoring tool, using AI, for boiler systems at coal-fired and natural gas power plants.

Due to frequent and rapid loading, power plants are subjected to excessive creep and fatigue damages, which often lead to the failure of critical boiler components, Bhattacharyya said. This causes power plants to operate inefficiently.

Here’s how power plants work: Coal or natural gas is combusted inside to produce high-pressure steam that is then used in a steam turbine to generate electricity. A boiler incorporates a furnace to burn fuel and generate heat, which is transferred to water to make steam.

“The boiler is at the heart of the power plant,” Bhattacharyya said. “During startup, the boiler is gradually heated up increasing the steam temperature and pressure to their nominal values.”

With power plant boilers, there’s a lot of starting up and shutting down.

Depending on the length of the idle time before the startup is initiated, startups can be categorized as hot, warm or cold startups. Cold startups can cause significantly more damage to the boiler health in comparison to hot or warm startups. During shutdown, the boiler is gradually cooled and the steam pressure is decreased.

Many power plant boilers start up and shut down several hundreds of times a year.

This is where AI can play in role, in predicting the behaviors of the boilers by “learning” the inner workings of the system, Bhattacharyya said.

“AI models will be used to describe the complex phenomena in the boilers that are time-varying,” he said. “For example, external fouling of boiler tubes by fly ash and slag is an extremely complex phenomenon being affected by various operating conditions such as the gas flow field, coal and ash particle shape and size distribution and hardware design.”

A tool to monitor the online health of the boiler can be developed to understand the impacts of load-following and can eventually help plants develop advanced process control strategies for improved flexibility, higher profitability and reduced forced outage without compromising safety or reliability, Bhattacharyya said.

“As the system learns, it eventually keeps improving the estimation accuracy,” he said.

The project is part of a larger initiative from the DOE’s Office of Fossil Energy that allocated $39 million toward a total of 17 research projects aimed at improving the reliability, performance and flexibility of the nation’s existing coal-fired power fleet.

Bhattacharyya’s model will be tested at Barry Power Plant, a coal- and natural gas-fired electrical generation facility in Alabama.

“Even though each boiler is different, the framework proposed can be readily adapted to the monitoring of practically any power plant,” he said. “A key goal of the project is to develop the framework so that it is easy to understand and implement for broader acceptability by and applicability to large number of power plants.”

###

Media Contact
Jake Stump, Director of Research Communications
[email protected]

Original Source

https://wvutoday.wvu.edu/stories/2019/09/17/wvu-engineer-aims-to-improve-profitability-and-flexibility-of-coal-fired-power-plants-using-ai

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Ethical and Governance Challenges in AI for Liver Cancer

December 26, 2025
Enhancing Solar Stills: Coated vs. Uncoated Absorbers

Enhancing Solar Stills: Coated vs. Uncoated Absorbers

December 26, 2025

KLHL4 Drives EGFR Signaling in Oral Cancer Progression

December 26, 2025

Evaluating Prediction Models for Leukemia Types

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ethical and Governance Challenges in AI for Liver Cancer

Enhancing Solar Stills: Coated vs. Uncoated Absorbers

KLHL4 Drives EGFR Signaling in Oral Cancer Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.