• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Written in blood

Bioengineer by Bioengineer
November 21, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Nov. 21, 2023 – Forensic science has captured the public imagination by storm, as the profusion of “true crime” media in the last decade or so suggests. By now, most of us know that evidence left at a crime scene, such as blood, can often reveal information that is key to investigating and understanding the circumstances around a crime — and that scientific methods can help interpret that information.

A tiny drop of blood during the millisecond it impacts a solid surface

Credit: James C. Bird

WASHINGTON, Nov. 21, 2023 – Forensic science has captured the public imagination by storm, as the profusion of “true crime” media in the last decade or so suggests. By now, most of us know that evidence left at a crime scene, such as blood, can often reveal information that is key to investigating and understanding the circumstances around a crime — and that scientific methods can help interpret that information.

In Physics of Fluids, by AIP Publishing, a group of scientists from Boston University and the University of Utah demonstrated how bloodstains can yield even more valuable details than what is typically gathered by detectives, forensic scientists, and crime scene investigators. By examining the protrusions that deviate from the boundaries of otherwise elliptical bloodstains, the researchers studied how these “tails” are formed.

“These protrusions are typically only used to get a sense of the direction that the drop traveled, but are otherwise neglected,” said author James Bird.

In fact, previous studies have primarily focused on larger blood drops falling vertically on flat surfaces or on inclined surfaces where gravity can reshape and obscure the tails. By contrast, the new study involved a series of high-speed experiments with human blood droplets with diameters of less than a millimeter impacting horizontal surfaces at various angles.

“We show that the precise flow that determines the tail length differs from the flow responsible for the size and shape of the elliptical portion of the stain,” said Bird. “In other words, the tail lengths encompass additional independent information that can help analysts reconstruct where the blood drop actually came from.”

Indeed, the tail length can reflect information about the size, impact speed, and impact angle of the blood drop that formed the stain. When measured for several blood stains in a stain pattern, the trajectories of the drops can be backtracked to their presumed origin. 

While their analysis employed only horizontal surfaces to examine impact velocity dynamics, Bird and his colleagues hope it triggers more studies that focus on the length of the tail in bloodstain patterns. They believe that incorporating tail length into standard bloodstain analyses will produce more robust evidentiary information.

“Knowing the origin of the blood stains at a crime scene can help detectives determine whether a victim was standing or sitting, or help corroborate or question a witness’s testimony,” said Bird.

###

The article “Bloodstain tails: Asymmetry aids reconstruction of oblique impact” is authored by Garam Lee, Daniel Attinger, Kenneth F. Martin, Samira Shiri, and James C. Bird. The article will appear in Physics of Fluids on Nov. 21, 2023 (DOI: 10.1063/5.0170124). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/5.0170124.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0170124

Article Title

Bloodstain tails: Asymmetry aids reconstruction of oblique impact

Article Publication Date

21-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

Blood and Fluid Signatures Predict IVF Embryo Success

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.