• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

World’s smallest, best acoustic amplifier emerges from 50-year-old hypothesis

Bioengineer by Bioengineer
June 2, 2021
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Acousto-electric devices reveal new road to miniaturizing wireless tech

IMAGE

Credit: Bret Latter, Sandia National Laboratories

ALBUQUERQUE, N.M. — Scientists at Sandia National Laboratories have built the world’s smallest and best acoustic amplifier. And they did it using a concept that was all but abandoned for almost 50 years.

According to a paper published May 13 in Nature Communications, the device is more than 10 times more effective than the earlier versions. The design and future research directions hold promise for smaller wireless technology.

Modern cell phones are packed with radios to send and receive phone calls, text messages and high-speed data. The more radios in a device, the more it can do. While most radio components, including amplifiers, are electronic, they can potentially be made smaller and better as acoustic devices. This means they would use sound waves instead of electrons to process radio signals.

“Acoustic wave devices are inherently compact because the wavelengths of sound at these frequencies are so small — smaller than the diameter of human hair,” Sandia scientist Lisa Hackett said. But until now, using sound waves has been impossible for many of these components.

Sandia’s acoustic, 276-megahertz amplifier, measuring a mere 0.0008 square inch (0.5 square millimeter), demonstrates the vast, largely untapped potential for making radios smaller through acoustics. To amplify 2 gigahertz frequencies, which carry much of modern cell phone traffic, the device would be even smaller, 0.00003 square inch (0.02 square millimeter), a footprint that would comfortably fit inside a grain of table salt and is more than 10 times smaller than current state-of-the-art technologies.

The team also created the first acoustic circulator, another crucial radio component that separates transmitted and received signals. Together, the petite parts represent an essentially uncharted path toward making all technologies that send and receive information with radio waves smaller and more sophisticated, said Sandia scientist Matt Eichenfield.

“We are the first to show that it’s practical to make the functions that are normally being done in the electronic domain in the acoustic domain,” Eichenfield said.

Resurrecting a decades-old design

Scientists tried making acoustic radio-frequency amplifiers decades ago, but the last major academic papers from these efforts were published in the 1970s.

Without modern nanofabrication technologies, their devices performed too poorly to be useful. Boosting a signal by a factor of 100 with the old devices required 0.4 inch (1 centimeter) of space and 2,000 volts of electricity. They also generated lots of heat, requiring more than 500 milliwatts of power.

The new and improved amplifier is more than 10 times as effective as the versions built in the ’70s in a few ways. It can boost signal strength by a factor of 100 in 0.008 inch (0.2 millimeter) with only 36 volts of electricity and 20 milliwatts of power.

Previous researchers hit a dead end trying to enhance acoustic devices, which are not capable of amplification or circulation on their own, by using layers of semiconductor materials. For their concept to work well, the added material must be very thin and very high quality, but scientists only had techniques to make one or the other.

Decades later, Sandia developed techniques to do both in order to improve photovoltaic cells by adding a series of thin layers of semiconducting materials. The Sandia scientist leading that effort happened to share an office with Eichenfield.

“I had some pretty heavy peripheral exposure. I heard about it all the time in my office,” Eichenfield said. “So fast forward probably three years later, I was reading these papers out of curiosity about this acousto-electric amplifier work and reading about what they tried to do, and I realized that this work that Sandia had done to develop these techniques for essentially taking very, very thin semiconductors and transferring them onto other materials was exactly what we would need to make these devices realize all their promise.”

Sandia made its amplifier with semiconductor materials that are 83 layers of atoms thick — 1,000 times thinner than a human hair.

Fusing an ultrathin semiconducting layer onto a dissimilar acoustic device took an intricate process of growing crystals on top of other crystals, bonding them to yet other crystals and then chemically removing 99.99% of the materials to produce a perfectly smooth contact surface. Nanofabrication methods like this are collectively called heterogeneous integration and are a research area of growing interest at Sandia’s Microsystems Engineering, Science and Applications complex and throughout the semiconductor industry.

Amplifiers, circulators and filters are normally produced separately because they are dissimilar technologies, but Sandia produced them all on the same acousto-electric chip. The more technologies that can be made on the same chip, the simpler and more efficient manufacturing becomes. The team’s research shows that the remaining radio signal processing components could conceivably be made as extensions of the devices already demonstrated.

Work was funded by Sandia’s Laboratory Directed Research and Development program and the Center for Integrated Nanotechnologies, a user facility jointly operated by Sandia and Los Alamos national laboratories.

So how long until these petite radio parts are inside your phone? Probably not for a while, Eichenfield said. Converting mass-produced, commercial products like cell phones to all acousto-electric technology would require a massive overhaul of the manufacturing infrastructure, he said. But for small productions of specialized devices, the technology holds more immediate promise.

The Sandia team is now exploring whether they can adapt their technology to improve all-optical signal processing, too. They are also interested in finding out if the technology can help isolate and manipulate single quanta of sound, called phonons, which would potentially make it useful for controlling and making measurements in some quantum computers.

###

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Media Contact
Troy Rummler
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22935-1

Tags: AcousticsNanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Fig. 1. Four types of aircraft exhaust particles and their typical number fractions at engine exit and 15 m downstream.

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

May 14, 2025
Artistic representation of CO2 capture from a moisture-laden gas stream using CALF-20, a zinc-based metal-organic framework.

Decoding Carbon Capture: How Nature and Technology Trap Carbon

May 13, 2025

Carbon Dioxide Enables Controlled Anionic Polymerization

May 13, 2025

Groundbreaking Study Maps Biochar’s Global Role in ESG and Climate Solutions

May 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    73 shares
    Share 29 Tweet 18
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Walking Speed Linked to Risk of 28 Cancers

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

SUMO2/3 Regulates Cell Survival Under Oxygen-Glucose Stress

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.