• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

World’s first transmission of 1 Petabit/s using a single-core multimode optical fiber

Bioengineer by Bioengineer
December 18, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: National Institute of Information and Communications Technology (NICT)

Points

  • A world record transmission of 1 petabit per second in a multimode optical fiber increases the current record data rate in multimode optical fibers by more than 2.5 times.
  • Wideband optical transmission in fibers with more 15 modes is demonstrated for the first time, enabled by mode multiplexers and a transmission fiber optimized for high optical bandwidth.
  • This demonstration advanced high-density and large capacity transmission in optical fibers that can be produced with standard methods.

Abstract

A group of researchers from the Network System Research Institute of the National Institute of Information and Communications Technology (NICT, Japan) led by Georg Rademacher, NOKIA Bell Labs (Bell Labs, USA) led by Nicolas K. Fontaine and Prysimian Group (Prysimian, France) led by Pierre Sillard succeeded in the world’s first transmission exceeding 1 petabit per second in a single-core multi-mode optical fiber. This increases the current record transmission in a multi-mode fiber by a factor of 2.5.

To date, transmission experiments in optical fibers supporting large number of modes was limited to small optical bandwidths. In this study, we demonstrated the possibility of combining highly spectral efficient wideband optical transmission with an optical fiber guiding 15 fiber modes that had a cladding diameter in agreement with the current industry standard of 0.125 mm. This was enabled by mode multiplexers and an optical fiber that supported wideband transmission of more than 80 nm over a distance of 23 km. The study highlights the large potential of single-core multi-mode fibers for high capacity transmission using fiber manufacturing processes similar to those used in the production of standard multi-mode fibers.

The results of this study were accepted for the post-deadline session at the 46th European Conference on Optical Communication (ECOC 2020).

Background

Over the past decade, intensive research was carried out worldwide to increase the data rates in optical transmission systems using space-division multiplexing in order to accommodate the exponentially increasing data transmission requirements. Compared to multi-core optical fibers, multi-mode fibers can support a higher spatial-signal-density and are easier to manufacture. However, using multi-mode fibers for high capacity space-division multiplexed transmission requires the use of computationally intensive digital signal processing. These requirements increase with the number of transmission modes and realizing transmission systems supporting large number of fiber modes is an active field of research.

Achievements

At NICT, a transmission experiment was designed and carried out that utilized the transmission fiber made by Prysmian and mode multiplexers developed by Bell Labs. A wideband transceiver subsystem was developed at NICT to transmit and receive several hundred highly spectral efficient WDM channels of high signal quality. The novel mode multiplexers were based on a multi-plane light conversion process where the light of 15 input fibers was reflected multiple times on a phase plate to match the modes of the transmission fiber. The transmission fiber was 23 km long and had a graded-index design. It was based on existing multi-mode fiber designs that were optimized for wideband operation and had a cladding diameter of 0.125 mm and a coating diameter of 0.245 mm, both adhering to the current industry standard. The transmission system demonstrated the first transmission exceeding 1 petabit per second in a multi-mode fiber increasing the current record demonstration by a factor of 2.5.

When increasing the number of modes in a multi-mode fiber transmission system, the computational complexity of the required MIMO digital signal processing increases. However, the used transmission fiber had a small modal delay, simplifying the MIMO complexity and maintained this low modal delay over a large optical bandwidth. As a result, we could demonstrate the transmission of 382 wavelength channels, each modulated with 64-QAM signals. The success of large-capacity transmission using a single-core multimode optical fiber, which has a high spatial signal density and easy manufacturing technology, is expected to advance high-capacity multimode transmission technology for future high capacity optical transmission systems.

Future Prospects

In the future, we would like to pursue the possibility of extending the distance of large-capacity multi-mode transmission and integrating it with multi-core technology to establish the foundation of future optical transmission technology with large capacity.

The paper on the results of this experiment was published at the 46th European Conference on Optical Communication (ECOC2020, December 6th – 10th 2020), which is one of the largest international conferences related to optical fiber communication. It was planned to be held in Brussels, Belgium but had to be conducted virtually due to the Novel Corona Virus epidemic. The paper received a very high evaluation from and was adopted for presentation in a special session for the latest research (Post Deadline Paper) that took place on the 10th of December.

###

Media Contact
HIROTA Sachiko
[email protected]

Original Source

https://www.nict.go.jp/en/press/2020/12/18-1.html

Tags: Computer ScienceElectrical Engineering/ElectronicsElectromagneticsHardwareOpticsResearch/DevelopmentTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025
blank

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.