• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

World-class research into Greenland’s oldest ice and the Universe’s densest stars win very large EU grants

Bioengineer by Bioengineer
October 25, 2022
in Science News
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The first ice cores were drilled in Greenland in 1955. But many an unsolved mystery remains in the oldest, deepest ice. For example, when was Greenland last carpeted by forest? And, when was the ice sheet formed? Niels Bohr Institute ice physicists will use a unique collection of old ice cores alongside freshly drilled ones to find answers from the past that will enlighten us about climatic change in the future.

GREEN2ICE group photo

Credit: Dorthe Dahl-Jensen

When was Greenland actually green? And how does the Universe make gold, platinum and uranium? Researchers from the University of Copenhagen have just received 11.4 million euro to answer these big questions. The prestigious ERC Synergy grant from the European Research Council has been awarded, among others, to the ice physicists Dorthe Dahl-Jensen and Anders Svensson, and the astrophysicist Darach Watson.

The first ice cores were drilled in Greenland in 1955. But many an unsolved mystery remains in the oldest, deepest ice. For example, when was Greenland last carpeted by forest? And, when was the ice sheet formed? Niels Bohr Institute ice physicists will use a unique collection of old ice cores alongside freshly drilled ones to find answers from the past that will enlighten us about climatic change in the future.

“The answers ensconced in the oldest ice will point to the future and provide us with knowledge that is far more accurate than what we have today with regards to how much our oceans stand to rise and as to when the ice sheet will no longer be able to be saved. So, this isn’t just exotic basic research, it is important knowledge about the ice sheet’s robustness in the face of climate change,” explains Professor Dorthe Dahl-Jensen of the Niels Bohr Institute.

Professor Dahl-Jensen heads GREEN2ICE, a large-scale research project that has just received a rare DKK 103 million (13.9 million euro) Synergy Grant from the European Research Council. Just over DKK 63 million (8.5 million euro) will go to the University of Copenhagen.

“This is a dream project for me – something I’ve been thinking about messing around with for many years. When we drill ice cores, we gain access to fascinating material from the depths, in the form of rocks, soil, small plant fossils and gases encased in air bubbles. These demonstrate that Greenland was once forested. By looking at these materials, we will be able to find out when this was, what type of forest existed and what sort of temperatures allowed for the forest to grow,” explains Dorthe Dahl-Jensen.

Among other things, the researchers will be able to measure when gas in the small air bubbles in the ice was trapped. Other measurements will look at how long it has been since the stones found in the ice cores were shined upon by the sun.

Because the material is both rare and difficult to obtain, the researchers have stored it away in a freezer for many years, explains associate professor and ice physicist Anders Svensson, the other UCPH researcher involved with the project:

“We only have one chance. Indeed, the ice cores contain so little of this material and it can only be used once. That’s what makes handling it is so risky and why we have never dared to do so until now, as methods have improved. But there is an enormous amount to gain if we succeed.”

The experts’ best guess as to when Greenland was last completely ice-free is about a million years ago. Using the new methods, the research team will test this hypothesis. Until now, it has only been possible to date ice back roughly 130,000 years.

In addition to Dorthe Dahl-Jensen and Anders Svensson, the GREEN2ICE research team consists of François Fripiat of the Université Libre de Bruxelles, Belgium and Pierre-Henri Blard from CNRS-Université de Lorraine, France. Other GREEN2ICE project partners are GEUS, DTU and the University of Manitoba.

An explosion of heavymetal

It’s gold and platinum. It is tin and uranium. It is the vital iodine we have in our blood. It is the molybdenum that all living organisms need to use. The heavy elements are an important part of the world around us. However, it has always been a major mystery how these elements were created.

Research points to the heaviest elements in the periodic table being created in the gigantic explosion that occurs when two neutron stars collide – a phenomenon that only occurs once every 100,000 years in our galaxy. The only time the phenomenon has been observed in detail was in 2017. But how it happens physically has so far not been possible to answer.

The researchers in the second ambitious project for which the University of Copenhagen has received an ERC Synergy grant now aim to do just that. The HEAVYMETAL project has received almost DKK 84 million (11.3 million euro), of which almost 22 million kroner (2.9 million euro) has been awarded to Darach Watson from the Niels Bohr Institute, who leads the project.

“Neutron star collisions are a treasure trove of information that potentially allow us to answer some of the biggest open questions in physics and cosmology. First of all, about how a large number of the elements are created. But they have been extremely difficult to investigate. However, I believe it is possible with the outstanding team we have assembled here,” says astrophysicist and associate professor Darach Watson.

The key is to decipher the spectroscopic data from the explosion, which was created during the neutron star collision in 2017. In this way, the research team will be able to see in detail the newly created heavy elements that are blown out in a radioactive fireball when neutron stars collide.

However, it first and foremost requires being able to model the very complex atomic structures of the heavy elements, which is extremely difficult.

“We expect to be able to measure both where and how the heavy elements are formed, how they are distributed, how much matter is ejected and more. We will dissect the explosion itself and then try to map in detail the nuclear physics of that process,” explains Darach Watson.

And it may also be possible to provide answers to several other important questions, such as how fast the Universe is expanding and how black holes are created.

HEAVYMETAL has assembled four different groups that work together as an international team of world-leading experts in each of their fields. In addition to Darach Watson who is the leader of the Copenhagen team, Andreas Bauswein leads the group at the GSI Helmholtzzentrum für Schwerionenforschung in Germany, Padraig Dunne the group from University College Dublin in Ireland, while Stuart Sim leads the Queen’s University in Belfast, Northern Ireland group.

“For me, this is a dream team. Normally, as a researcher, you sit a lot by yourself. The fact that we can make such direct use of each other’s different expertise will make a huge difference and really turbo-charge the research so that we can reach new results much faster,” concludes Darach Watson.

 



Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In