• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

With head and leg to the beautiful cut

Bioengineer by Bioengineer
July 7, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Up to three million specimens, translated into human terms about twice as many inhabitants as Munich – that’s how large a single colony of leafcutter ants can become. To feed so many creatures at the same time, the animals have developed a sophisticated system: In their underground nests, they grow fungi, which they distribute to the colony as food. The nutrient medium for the fungus growth is a mixture of chopped leaf pieces that the animals obtain from surrounding trees and shrubs.

Leaf cutter ant

Credit: Daniela Römer / JMU

Up to three million specimens, translated into human terms about twice as many inhabitants as Munich – that’s how large a single colony of leafcutter ants can become. To feed so many creatures at the same time, the animals have developed a sophisticated system: In their underground nests, they grow fungi, which they distribute to the colony as food. The nutrient medium for the fungus growth is a mixture of chopped leaf pieces that the animals obtain from surrounding trees and shrubs.

A study by the Julius-Maximilians-University of Würzburg has now investigated how leafcutter ants measure the correct size of these leaf pieces. “Until now, it was assumed that the length of an animal alone determined this – that smaller ants simply cut smaller pieces and larger ones cut larger pieces,” explains Dr. Daniela Römer, a biologist at the Department of Zoology II at the University of Würzburg. “We have now been able to show that the animals not only use their body length as a tool, but also their hind legs and heads.”

Two measuring systems decisive for leaf size

As part of the research, the scientists had ants cut artificial leaves from parafilm, a whitish translucent foil. In doing so, they first prevented the hind legs from contacting the edge of the leaf. “During the cutting process, the ants almost always hold on with their hind legs,” Römer says. “We therefore assumed that the position of their legs played a major role in leaf cutting.” While the ants did indeed separate their leaf pieces more irregularly as a result, it was only to a small extent.

More successful was the focus on another body part. “Ants repeatedly angle their heads when separating leaves – that’s where fine mechanosensory hairs are located,” explains Römer. The team found that when these hairs are shaved off (in addition to lacking hind leg posture), they completely lose control over the cutting process and fragment size. “Our research shows: Leafcutter ants have a much more plastic cutting behavior than previously thought,” Römer said. “The measurement of leaf fragment size goes far beyond just body length.”

Researchers aim to decipher more cutting mechanisms

In further research, the scientists now want to offer ants not just uniform leaf material, but different sizes, thicknesses and leaf vein structures to better reflect natural diversity. “Using automated motion analysis, we will then determine how plastic ants respond to different mechanical properties of the leaves during the cutting process,” Römer explains. To do this, the team will collaborate with Dr. Jan Ache, the Emmy Noether group leader at the Würzburg Chair of Neurobiology and Genetics, and Dr. Till Bockemühl from the University of Cologne. The project was financially supported by the Chair of Behavioral Psychology and Sociobiology of the University of Würzburg.



Journal

Journal of Experimental Biology

DOI

10.1232/jeb.244246

Method of Research

Observational study

Subject of Research

Animals

Article Title

Two feedback mechanisms involved in the control of leaf fragment size in leaf-cutting ants

Article Publication Date

22-Jun-2023

COI Statement

The authors declare no competing or financial interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracing Leaf Metabolism: Linking Photorespiration and One-Carbon Flux

September 3, 2025

Decoding Kazakhstan Soybean Genetics via Whole Genome Sequencing

September 3, 2025

Exploring Centipede Forcipules: Structure and Strength

September 3, 2025

Unraveling Bipolar Disorder: Neurodegeneration in the Paraventricular Thalamus Links Symptoms to Biology

September 3, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracing Leaf Metabolism: Linking Photorespiration and One-Carbon Flux

VEGF from Macrophages Mitigates Radiation Dermatitis

Exploring Policies for Integrated Multimorbidity Management in Malawi

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.