• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Wise plant analysis

Bioengineer by Bioengineer
December 5, 2016
in Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Weizmann Institute of Science

Here's a reason not to peel tomatoes: A new method of plant analysis, developed at the Weizmann Institute of Science, has identified healthful antioxidants in tomato skins. In fact, as reported recently in Nature Communications, the new method reveals that biologically active plant substances typically associated with particular plant species – including those providing health benefits – are much more prevalent across the plant kingdom than was previously thought.

Plants produce, in total, an estimated million-plus organic chemicals, and each plant is believed to contain as many as 15,000, on average. To address the challenge of identifying the majority of such "specialized metabolites" in any given plant, Dr. Nir Shahaf and other members of a team headed by Prof. Asaph Aharoni of Weizmann's Plant and Environmental Sciences Department created a database of plant metabolites, called WeizMass. Shahaf then developed a computer tool, MatchWeiz, which makes it possible to identify the metabolites by checking experimental results from the metabolic analysis of a particular plant against the database.

Using these new tools, the scientists identified more than twenty metabolites that had never before been reported in tomatoes, including certain antioxidants in the skin. When the researchers then compared the analysis of tomatoes with that of duckweed and the research model Arabidopsis thaliana, they discovered an overlap in specialized metabolite content among these strikingly different species.

These and other results suggest that plant species are not as specialized in their metabolism as has been commonly assumed. In other words, valuable substances produced by exotic plants may potentially be derived from more common species. The Weizmann team has found, for instance, that both duckweed and Arabidopsis thaliana contain – albeit in smaller amounts – certain metabolites used in traditional medicine that until now have been isolated only from such oriental medicinal plants as maidenhair tree (Ginkgo biloba), ginger (Zingiber officinale) and rock pine (Orostachys japonicus).

"WeizMass and MatchWeiz can serve as extremely powerful tools for studying plant metabolism and identifying metabolites with useful biological activity, including potential drugs," says Aharoni.

WeizMass and MatchWeiz are not limited to the study of plant metabolites but may also be used to investigate the biology of other living systems, including animal and human metabolism.

###

The research team included staff scientists Drs. Ilana Rogachev and Sergey Malitsky, lab technician Dr. Sagit Meir, postdoctoral fellows Drs. Uwe Heinig and Shuning Zheng, and research students Maor Battat and Hilary Wyner, as well as Dr. Ron Wehrens of Wageningen University in the Netherlands.

Prof. Asaph Aharoni's research is supported by the Tom and Sondra Rykoff Family Foundation; the Leona M. and Harry B. Helmsley Charitable Trust; the Lerner Family Plant Science Research Fund; and Yossie and Dana Hollander, Israel. Prof. Aharoni is the recipient of the André Deloro Prize; and he is the incumbent of the Peter J. Cohn Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Media Contact

yael edelman
[email protected]
@WeizmannScience

http://www.weizmann.ac.il

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Senem SEZER won the Altın Kalem Master’s Thesis Award

March 22, 2022

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....