• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Windows will soon generate electricity, following solar cell breakthrough

Bioengineer by Bioengineer
April 22, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two square metres of solar window will do the same job as a standard rooftop solar panel, Australian researchers say.

IMAGE

Credit: Dr Jae Choul Yu

Semi-transparent solar cells that can be incorporated into window glass are a “game-changer” that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.

The researchers – led by Professor Jacek Jasieniak from the ARC Centre of Excellence in Exciton Science (Exciton Science) and Monash University – have succeeded in producing next-gen perovskite solar cells that generate electricity while allowing light to pass through. They are now investigating how the new technology could be built into commercial products with Viridian Glass, Australia’s largest glass manufacturer.

This technology will transform windows into active power generators, potentially revolutionising building design. Two square metres of solar window, the researchers say, will generate about as much electricity as a standard rooftop solar panel.

The research was also supported by the Australian Renewable Energy Agency (ARENA).

The idea of semi-transparent solar cells is not new, but previous designs have failed because they were very expensive, unstable or inefficient.

Professor Jasieniak and colleagues from Monash’s Materials Science and Engineering Department and Australia’s national science agency, CSIRO, used a different approach.

They used an organic semiconductor that can be made into a polymer and used it to replace a commonly used solar cell component (known as Spiro-OMeTAD), which shows very low stability because it develops an unhelpful watery coating. The substitute produced astonishing results.

“Rooftop solar has a conversion efficiency of between 15 and 20%,” Jacek said.

“The semi-transparent cells have a conversion efficiency of 17%, while still transmitting more than 10% of the incoming light, so they are right in the zone. It’s long been a dream to have windows that generate electricity, and now that looks possible.”

Co-author and CSIRO research scientist, Dr Anthony Chesman, said the team is now working on scaling up the manufacturing process.

“We’ll be looking to develop a large-scale glass manufacturing process that can be easily transferred to industry so manufacturers can readily uptake the technology,” he said.

Solar windows will be a boon for building owners and residents, and will bring new challenges and opportunities for architects, builders, engineers and planners.

“There is a trade-off,” explained Professor Jasieniak, “The solar cells can be made more, or less, transparent. The more transparent they are, the less electricity they generate, so that becomes something for architects to consider.”

He added that solar windows tinted to the same degree as current glazed commercial windows would generate about 140 watts of electricity per square metre.

The first application is likely to be in multistorey buildings.

Large windows deployed in high-rise buildings are expensive to make. The additional cost of incorporating the semi-transparent solar cells into them will be marginal.

“But even with the extra spend, the building then gets its electricity free!” Professor Jasieniak said.

“These solar cells mean a big change to the way we think about buildings and the way they function. Up until now every building has been designed on the assumption that windows are fundamentally passive. Now they will actively produce electricity.

“Planners and designers might have to even reconsider how they position buildings on sites, to optimise how the walls catch the sun.”

Lead author Dr Jae Choul Yu, also from Exciton Science and Monash, added that more efficiency gains would flow from further research.

“Our next project is a tandem device,” he said. “We will use perovskite solar cells as the bottom layer and organic solar cells as the top one.”

As to when the first commercial semi-transparent solar cells will be on the market, “that will depend on how successful scaling of the technology will be, but we are aiming to get there within 10 years,” said Professor Jasieniak.

Jatin Khanna, Operations Manager for Viridian Glass, added: “The development of such solar windows presents an opportunity that could translate into the new glass innovations and technologies going forward.”

###

The paper is scheduled for the May edition of Nano Energy. It is available in early-release online at https://www.sciencedirect.com/science/article/abs/pii/S2211285520301920

Media Contact
Iain Strachan
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2020.104635

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)MaterialsNanotechnology/MicromachinesOpticsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025
Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Comparative Pharmacokinetics of Levamisole Across Species

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.