• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Why pancreatic ductal adenocarcinoma is so lethal

Bioengineer by Bioengineer
May 19, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Vakoc lab/CSHL, 2020

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer, killing patients within a year. CSHL Professor Christopher Vakoc and his former postdoc Timothy Somerville discovered how pancreatic cells lose their identity, acquire a deadly new identity, and recruit nearby cells to help them grow, promote inflammation, and invade nearby tissues. This understanding could lead to new therapies similar to ones developed for other cancers.

Vakoc says, “We think part of the reason why these tumors are so aggressive is that they exploit normal cells. The normal cells that are in the vicinity of these tumors, are actually co-conspirators in this disease, and are being co-opted to kind of create a community of cells that are kind of teaming up with one another to drive this aggressive cancer to expand and metastasize. Ultimately, we think we sort of learned why this tumor is so aggressive through understanding these two mechanisms.”

Somerville found two transcription factors that were highly abundant in PDA but not in a normal pancreas: ZBED2 (pronounced Z-bed too) and p63.

ZBED2 confuses the pancreas cell about its own identity. It displaces another transcription factor that is required for the pancreas cell to perform its normal functions as a pancreas cell. ZBED2 turns pancreas cells into squamous cells–a type of cell found in the skin. Patients with the worst outcomes have the highest levels of squamous cells in their tumors.

Little was known about ZBED2 when Somerville began his research. He says, “ZBED2 is a gene. It makes a protein, which is transcription factor ZBED2. What was completely unknown was what this protein ZBED2 was actually doing. We were able to demonstrate that it is a transcription factor, which means that it can bind to DNA and regulate other genes. And we were able to show what types of genes it regulates.”

p63 recruits nearby cells–mostly neutrophils and fibroblasts–to support the cancerous squamous cells. They “alter the tumor microenvironment, making it more inflammatory and more aggressive. This is what we think is contributing to the particularly poor outcomes of this group of pancreatic patients,” says Somerville.

PDA is notoriously resistant to chemotherapy. The wall of inflammatory cells makes it difficult for anti-tumor drugs to access the tumor. Somerville believes that understanding what ZBED2 and p63 are doing to make this cancer so aggressive will uncover ways that scientists can prevent or at least slow its growth. Somerville notes, “It’s about exploiting transcription factors. If we understand their functions, we can use them to show us how to think about different ways to treat this disease.”

The FDA has already approved drugs that target transcription factors in breast cancer, leukemia, and prostate cancer. Vakoc’s lab is seeking to advance this concept for other types of cancer, such as PDA.

###

Funders: CSHL Cancer Center, CSHL Association, the State of New York, the Lustgarten Foundation, the Pershing Square Sohn Cancer Research Alliance, the CSHL & Northwell Health Affiliation, the National Cancer Institute, the Thompson Family Foundation, the Simons Foundation, NIH, Pancreatic Cancer Action Network of the AACR, EMBO, the Human Frontiers Science Program, and Deutsche Forschungsgemeinschaft.

Media Contact
Sara Roncero-Menendez
[email protected]

Original Source

https://www.cshl.edu/why-pancreatic-ductal-adenocarcinoma-is-so-lethal/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1921484117

Tags: BiologycancerCell BiologyGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Improving Sleep in Shift-Work Nurses: A Meta-Analysis

September 5, 2025
blank

Microgravity Impacts Testicular Health via C/EBP-β/MeCP2/Wnt Axis

September 5, 2025

New Insights in Thoraco-Lumbar Spine Modeling

September 5, 2025

Groundbreaking Discoveries in Energy Metabolism and Immune Dynamics Poised to Revolutionize Head and Neck Cancer Therapy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Sleep in Shift-Work Nurses: A Meta-Analysis

Microgravity Impacts Testicular Health via C/EBP-β/MeCP2/Wnt Axis

Natural Medicines Target Tumor Blood Vessels to Halt Cancer Progression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.