• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Why can’t mTOR inhibitors kill cancer? Study explains

Bioengineer.org by Bioengineer.org
January 31, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: McGill University and Masahiro Morita, Ph.D.

Anti-cancer drugs called mTOR inhibitors slow the growth of cancer cells but show limited ability to cause cancer cell death. New studies explain why.

Masahiro Morita, Ph.D., assistant professor of molecular medicine in the Joe R. & Teresa Lozano Long School of Medicine at UT Health San Antonio, contributed to the research. He is an investigator with the university's Sam & Ann Barshop Institute for Longevity & Aging Studies.

Before joining UT Health, Dr. Morita was a postdoctoral fellow at McGill University in Montreal, Quebec.

The cancer drugs act on a cell regulator called mTOR (Mechanistic Target of Rapamycin).

mTOR controls a process that determines how large our cells are and how many cells we have. mTOR also impacts mitochondria, which are the energy centers in our cells.

Mitochondria become elongated when mTOR activity is inhibited, Dr. Morita said. When mTOR is stimulated, these energy centers become fragmented.

"Increased fragmentation of mitochondria is implicated in some cancers," Dr. Morita said.

mTOR controls expression of proteins that alter mitochondrial structure and function in ways that unexpectedly protect cells from death, the team reported.

This is why the cancer cells targeted by mTOR therapy are not dying.

"The next step is to test tandem therapy in cell studies, because it makes sense to combine an mTOR inhibitor with an agent that does kill cancer cells," Dr. Morita said.

The findings are in Molecular Cell.

###

The University of Texas Health Science Center at San Antonio, with missions of teaching, research and healing, is one of the country's leading health sciences universities and is now called UT Health San Antonio™. UT Health's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced more than 33,000 alumni who are advancing their fields throughout the world. With seven campuses in San Antonio and Laredo, UT Health San Antonio has a FY 2018 revenue operating budget of $838.4 million and is the primary driver of its community's $37 billion biomedical and health care industry. For more information on the many ways "We make lives better®," visit http://www.uthscsa.edu.

Media Contact

Will Sansom
[email protected]
210-567-2579
@UTHealthSA

Sidebar Shop

Share12Tweet8Share2ShareShareShare2

Related Posts

Head and Neck Cancer Trends among Older Adults

December 16, 2025

Improving Discharge Medicine Communication for Safer Care

December 16, 2025

Chemotherapy Alters Gut, Boosts Cancer Metastasis Defense

December 16, 2025

Enhancing Preterm Infant Brain and Body Development

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Head and Neck Cancer Trends among Older Adults

Improving Discharge Medicine Communication for Safer Care

Chemotherapy Alters Gut, Boosts Cancer Metastasis Defense

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.