• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

When wheels and heads are spinning — DFG research project on motion sickness in automated driving

Bioengineer by Bioengineer
May 22, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Whether it is working on the computer or playing a card game with the kids – automated driving creates plenty of opportunities for activities while traveling by car. However, these cause discomfort and nausea in some people – a typical motion sickness occurs. Researchers from TU Berlin and Charité – Universitätsmedizin Berlin are now investigating how motion sickness and automated driving are closely related and how discomfort can be alleviated. The research project is funded by the German Research Foundation (DFG) with roughly 700,000 euros for three years and should increase acceptance of the new technology.

Whether at sea, on the road, in the air, or in space – certain movements and activities over a period of time make many people complain of dizziness, cold sweats, nausea, and headache. They suffer from travel or motion sickness. In a study conducted by the Charité, over 40 percent of 500 respondents said they had at least once experienced symptoms of the condition during a car ride. Kinetosis, to use the technical term, is more common in children than in adults. In addition, passengers engaged in occupations such as reading are more likely to experience the phenomenon than drivers. Accordingly, kinetosis can, to a considerable extent, negatively affect the available space and freedom to move in a car made possible through automated driving.

The scientists are now investigating how kinetosis comes about and how it can be reduced in automated driving. They want to find out how to avoid the condition by installing technical measures such as an active chassis or active seats. The car should recognize at an early stage when a person develops symptoms of kinetosis and initiate appropriate countermeasures. It could then recommend a change in the driving style or the suspension characteristics or propose a break.

“New insights into how to reduce motion sickness through vehicle or medical intervention will help increase the acceptance and benefits of automated driving,” says Steffen Müller, head of the Department of Automotive Engineering of Technische Universität Berlin and head of the research project.

Dr. Uwe Schönfeld from the Department of Otolaryngology at the Charité Benjamin Franklin campus and head of the Charité subproject adds: “We want to understand the causes responsible for the widespread sensitivity to kinetosis. Specifically, we will categorize study participants regarding their predisposition to motion sickness and collect physiological data on the function of the balance organs in the inner ear.” Among other things, this will be examined by means of a special rotating chair. The participants’ facial expressions are examined and analyzed by video in order to identify patterns for symptoms of motion sickness. In addition, volunteers are exposed to driving situations with a risk of kinetosis in test vehicles set up for the research project. Subsequently, the biological interdependencies are mapped in a simulation model.

The joint project of TU Berlin and Charité pursues an interdisciplinary approach. Both partners are thus further expanding their collaboration in research. The researchers hope that their scientific findings will be used by automotive companies to implement these functions and systems in their products in order to prevent travel sickness.

###

Media Contact
Dr. Uwe Schonfeld
[email protected]
https://www.charite.de/en/service/press_reports/artikel/detail/alles_dreht_sich_dfg_forschungsprojekt_zu_reisekrankheit_beim_automatisierten_fahren/

Tags: Mechanical EngineeringMedicine/HealthRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceVehicles
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.