• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

When the light is neither “on” nor “off” in the nanoworld

Bioengineer by Bioengineer
February 14, 2023
in Chemistry
Reading Time: 3 mins read
0
Cartoon of the slit-shaped nanostructure in gold with quantum state highlighted.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Whether the light in our living spaces is on or off can be regulated in everyday life simply by reaching for the light switch. However, when the space for the light is shrunk to a few nanometers, quantum mechanical effects dominate, and it is unclear whether there is light in it or not. Both can even be the case at the same time, as scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the University of Bielefeld show in the journal “Nature Physics.”

Cartoon of the slit-shaped nanostructure in gold with quantum state highlighted.

Credit: Daniel Fersch / Uni Würzburg

Whether the light in our living spaces is on or off can be regulated in everyday life simply by reaching for the light switch. However, when the space for the light is shrunk to a few nanometers, quantum mechanical effects dominate, and it is unclear whether there is light in it or not. Both can even be the case at the same time, as scientists from the Julius-Maximilians-Universität Würzburg (JMU) and the University of Bielefeld show in the journal “Nature Physics.”

“Detecting these exotic states of quantum physics on the size scales of electrical transistors could help in the development of optical quantum technologies of future computer chips,” explains Würzburg professor Bert Hecht. The nanostructures studied were produced in his group.

The technology of our digital world is based on the principle that either a current flows or it does not: one or zero, on or off. Two clear states exist. In quantum physics, on the other hand, it is possible to disregard this principle and create an arbitrary superposition of the supposed opposites. This increases the possibilities of transmitting and processing information many times over. Such superposition states have been known for some time, especially for the particles of light, so-called photons, and are used in the detection of gravitational waves.

Quantum states detected

A team of physicists and physical chemists from Bielefeld and Würzburg has now succeeded in detecting such superposition states of light directly in a nanostructure. Light is captured in a nanostructure in a very small space and couples to electronic oscillations: so-called plasmons. This allows the energy of the light to be held in place on the nanoscale.

In the experiment in the group of Würzburg professor Tobias Brixner, the researchers investigated how many photons from a light pulse couple to the nanostructure. The result: simultaneously no photon and three photons! Brixner explains: “Detecting this signature was an enormous challenge. Photons can be detected very well with sensitive detectors; however, in the case of single photons, which are also in a quantum mechanical superposition state, suitable methods did not exist in the nanoworld.” In addition, the coupled states of photons and electrons survive for less than a millionth of a millionth of a second and then decay again, leaving hardly any time for their detection.

Highest spatial and temporal resolution combined

In the experiments now published, a special detection was used. “The energy released during the decay of the state is sufficient to release other electrons from the nanostructure,” explains Professor Walter Pfeiffer (Bielefeld), who played a key role in developing the physical model and interpreting the data. The triggered electrons could then be captured in an image using a photoemission electron microscope and a resolution of a few nanometers. Because of the fast decay times, sequences of ultrashort laser pulses were used to obtain the “fingerprint” of the superposition states of the light.

This is a first step toward the goal of analyzing the full quantum physical state of coupled photon and electrons directly at the nanoscale. A process that, as in medicine, is described by the term tomography. The light in the offices and laboratories of the scientists involved should thus clearly remain switched on.

Links

Research Briefing: Tobias Brixner and Walter Pfeiffer, „Identifying the quantum fingerprint of plasmon polaritons“, Nature Physics (2023), https://doi.org/10.1038/s41567-022-01925-0

Open link to the Publication https://rdcu.be/c5xgz



Journal

Nature Physics

DOI

10.1038/s41567-022-01912-5

Article Title

Detection of a plasmon-polariton quantum wave packet

Article Publication Date

13-Feb-2023

COI Statement

No conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    78 shares
    Share 31 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Study Reveals How Sex-Based Pelvic Differences Impact Spinal Screw and Rod Placement in Surgery

Prolonged U.S. Residency Linked to Rising Heart Disease Risk Among Immigrants

Virtual Reality: A Promising Tool for Alleviating Anxiety in Patients Facing Interventional Cardiovascular Procedures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.