• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

When macrophages are deprived of oxygen

Bioengineer by Bioengineer
May 24, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How pathogens are controlled when tissue is deprived of adequate oxygen supply

Infected tissue has a low concentration of oxygen. The body’s standard immune mechanisms, which rely on oxygen, can then only function to a limited extent. How does the immune system nevertheless manage to control bacteria under such conditions? The working groups led by PD Dr. Anja Lührmann at the Institute of Microbiology – Clinical Microbiology, Immunology and Hygiene (Director: Prof. Dr. Christian Bogdan) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Prof. Dr. Jonathan Jantsch at the Institute for Medical Microbiology and Hygiene (Director: Prof. Dr. Dr. André Gessner) at University Hospital Regensburg have investigated this question in collaboration with other groups from Erlangen, Regensburg and Jena. The researchers discovered that fewer metabolites are produced in the citric acid cycle under hypoxic conditions, leading to a reduced rate of reproduction among bacteria in macrophages.

Macrophages are a type of phagocyte and belong to the congenital immune system, where they have a key role to play in defending against infection by intracellular pathogens such as those which cause tuberculosis, Legionnaires’ disease or Q fever. The team of researchers observed changes in the mitochondrial metabolism of the macrophages caused by signalling pathways initiated by the lack of oxygen (hypoxia). This leads to a reduction in various metabolites in the citric acid cycle, especially citrate. This in turn prevents bacteria reproduction, as citrate is an essential growth factor for certain bacteria. ‘Our results describe a method of pathogen control which does not depend on oxygen and which we were not aware of until now,’ explains Prof. Jantsch from Universität Regensburg. FAU scientist PD Dr. Lührmann adds: ‘The pharmacological influence of these signalling pathways opens up new opportunities for fighting infectious diseases.’

###

Media Contact
FAU Press Office
[email protected]

Related Journal Article

https://www.fau.eu/2019/05/15/news/research/when-macrophages-are-deprived-of-oxygen/
http://dx.doi.org/10.1016/j.celrep.2019.02.103

Tags: Immunology/Allergies/AsthmaMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

September 23, 2025

Anatomic Inventory Fields for Transgender Patient Care

September 23, 2025

How Blood Tests Are Transforming Spinal Cord Injury Recovery

September 23, 2025

New Assays Identify 12 Animal Species, Humans

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

Creating Liquid Bio-Fertilizer from Citrus, Bananas, and Eggshells

Anatomic Inventory Fields for Transgender Patient Care

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.