• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

What rules govern the structure of membraneless organelles?

Bioengineer by Bioengineer
February 8, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study in Nature Communications outlines physical rules regulating the architecture of these liquid organelles

IMAGE

Credit: Taranpreet Kaur

BUFFALO, N.Y. — In cells, numerous important biochemical functions take place within spherical chambers made from proteins and RNA.

These compartments are akin to specialized rooms inside a house, but their architecture is radically different: They don’t have walls. Instead, they take the form of liquid droplets that don’t have a membrane, forming spontaneously, similar to oil droplets in water. Sometimes, the droplets are found alone. Other times, one droplet can be found nested inside of another. And these varying assemblies can regulate the functions the droplets perform.

A study published on Feb. 8 in Nature Communications explores how these compartments, also known as membraneless organelles (MLOs) or biomolecular condensates, form and organize themselves. The research lays out physical rules controlling the arrangement of various types of synthetic MLOs created using just three kinds of building materials: RNA and two different proteins, a prion-like polypeptide (PLP) and an arginine-rich polypeptide (RRP).

The project brought together a team from the University at Buffalo and Iowa State University.

“Different condensates can coexist inside the cells,” says first author Taranpreet Kaur, a PhD student in physics in the UB College of Arts and Sciences. “They can be detached, attached to another condensate, or completely embedded within one another. So how is the cell controlling this? We found two different mechanisms that allowed us to control the architecture of synthetic membraneless organelles formed inside a test tube. First, the amount of RNA in the mixture helps to regulate the morphology of the organelles. The other factor is the amino acid sequence of the proteins involved.”

“These two factors impact how sticky the surfaces of the condensates are, changing how they interact with other droplets,” says Priya Banerjee, PhD, UB assistant professor of physics, and one of two senior authors of the paper. “In all, we have shown using a simple system of three components that we can create different kinds of organelles and control their arrangement in a predictive manner. We suspect that such mechanisms may be employed by cells to arrange different MLOs for optimizing their functional output.”

Davit Potoyan, PhD, assistant professor of chemistry at Iowa State University, is the study’s other senior author.

Addressing questions in cell biology

The experiments were done on model systems made from RNA and proteins floating in a buffer solution. But the next step in the research — already underway — is to conduct similar studies inside a living cell.

“Going back to our motivations in researching MLOs, the big questions that started the field were questions in cell biology: How do cells organize their internal space?” Banerjee says. “The principles we uncover here contribute to the knowledge base that will improve understanding in this area.”

Research on MLOs could lead to advancements in fields such as synthetic cell research or new materials for drug delivery.

“We are in the process of learning the biomolecular grammar that may be a universal language used by cells for taming their inner cellular complexity. We hope one day to utilize this knowledge to engineer artificial protocells with custom-designed functionalities inspired by nature,” Potoyan says.

###

In addition to Banerjee, Potoyan and Kaur, co-authors of the study included Iowa State University chemistry postdoctoral researcher Muralikrishna Raju; UB physics PhD student Ibraheem Alshareedah; and UB physics postdoctoral researcher Richoo Davis.

The study was supported by the National Institute of General Medical Sciences, part of the U.S. National Institutes of Health, and the U.S. National Science Foundation (NSF). The team also received assistance from two NSF-funded resources: The UB North Campus Confocal Imaging Facility, and the Extreme Science and Engineering Discovery Environment.

Media Contact
Cory Nealon
[email protected]

Original Source

http://www.buffalo.edu/news/releases/2021/02/009.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21089-4

Tags: BiochemistryBiologyBiotechnologyCell BiologyMicrobiologyMolecular BiologyMolecular PhysicsPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

Harnessing Computational Power to Predict Optimal Ligands for Generating Reactive Alkyl Ketone Radicals in Organic Synthesis

October 30, 2025
blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stereotactic Radiation Boosts Inoperable Pancreatic Cancer Treatment

Eco-Friendly Silver Nanoparticles from Argan Pulp Extract

AI-Driven Fuzzy Control for Chinese Art Color Fusion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.