• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What makes peppers blush

Bioengineer by Bioengineer
December 14, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biology

IMAGE

Credit: RUB, Marquard

Visually, this transformation is clearly visible in the colour change from green to orange or red. The team documented the process in detail and globally at the protein level and published the results in “The Plant Journal” on 30 November 2020.

From chlorophyll to carotenoid

Because of their aromatic taste and high concentrations of health-promoting ingredients such as vitamin C and antioxidant provitamin A (carotenoids), bell peppers, scientifically Capsicum annuum, belong to the most popular vegetables. The ripening process in peppers proceeds from photosynthetically active fruits with high chlorophyll and starch content to non-photosynthetic fruits that are rich in carotenoids. Essential steps of this transformation take place in typical plant cell organelles, the so-called plastids.

Progenitor organelles, the so-called proplastids, are the first step. They are not yet differentiated and transform into different plastids depending on tissue type and environmental signals. In many fruit and vegetable varieties, the chromoplasts develop from them. “They got their name because of their frequently bright colours,” explains Sacha Baginsky. In pepper fruits, proplastids initially turn into photosynthetically active chloroplasts, from which the carotenoid-rich chromoplasts develop through the breakdown of chlorophyll and the photosynthesis machinery as the fruit ripens.

The crucial difference to tomatoes

The same applies to tomatoes, although there is a crucial difference to peppers: tomatoes belong to the climacteric fruits that continue to ripen after harvesting. Biochemically, this process is characterised by an enormous increase in respiratory activity with high oxygen consumption, the so-called climacteric. This is not the case with peppers. “The green peppers frequently available in supermarkets are unripe,” says Sacha Baginsky. They still carry chlorophyll-rich chloroplasts and, when the pepper is fresh, also contain a large amount of the photosynthetic storage substance starch. “Our data now show several differences in chromoplast differentiation between peppers and tomatoes at the molecular level, which provides insights into the different metabolism of climacteric and non-climacteric fruits,” says the biologist.

One example is energy metabolism: the protein PTOX – acronym of plastid terminal oxidase – that generates water by transferring electrons to oxygen during carotenoid production is only present in small quantities in peppers. This might result in lower oxygen consumption and could be associated with increased ATP synthesis. Chromoplasts use modules of photosynthetic electron transport for ATP synthesis, which in peppers is at least partially carried out via the so-called cytochrome b6/f complex and plastocyanin that in peppers is present in large quantities – in contrast to tomatoes. Small amounts of PTOX in peppers could mean that more ATP can be produced as more electrons from carotenoid production flow via this pathway to a previously unknown oxidase.

More effective and sustainable production of carotenoids in plants

“This is just one example of several, sometimes subtle differences in the metabolism of tomato and pepper chromoplasts,” explains Sacha Baginsky. “Our data provide a new approach to understanding chromoplast differentiation, which we now intend to explore in more depth.” For example, the Bochum-based team will use a system described by a Spanish group in which chromoplast differentiation in leaves is induced by the production of a single enzyme. This could indicate ways to produce carotenoids more effectively and sustainably in plants. The data collected so far are publicly available through the Pride database.

###

Funding

The study was funded by the German Research Foundation, funding codes INST 271/283-1 FUGG and BA 1902/3-2.

Media Contact
Sacha Baginsky
[email protected]

Original Source

https://news.rub.de/english/press-releases/2020-12-14-biology-what-makes-peppers-blush

Related Journal Article

http://dx.doi.org/10.1111/tpj.15104

Tags: BiologyCell BiologyNutrition/NutrientsPlant Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Giant sand worm discovery proves truth is stranger than fiction

January 21, 2021
IMAGE

The downward trend: Nature’s decline risks our quality of life

January 21, 2021

Scientists make pivotal discovery on mechanism of Epstein-Barr virus latent infection

January 21, 2021

A closer look at T cells reveals big differences in mild vs. severe COVID-19 cases

January 21, 2021
Next Post
IMAGE

When chemistry with green light mimics what happens in life

IMAGE

Plantwise honored with International IPM Achievement Award

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsPublic HealthClimate ChangecancerMaterialsBiologyCell BiologyMedicine/HealthTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Why so few black skiers and ballet dancers?
  • Navigating uncertainty: Why we need decision theory during a pandemic
  • Combined river flows could send up to 3 billion microplastics a day into the Bay of Bengal
  • New combination of immunotherapies shows great promise for treating lung cancer
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In