• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

What leads to compulsive alcohol use? New experiments into binge drinking provide answers

Bioengineer by Bioengineer
November 21, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Vanderbilt University


Occasional binge drinking isn’t uncommon, but about 30 percent of all adults exposed to alcohol go on to engage in compulsive drinking behaviors despite negative effects and consequences – a major feature of alcohol use disorder.

For years, researchers have sought answers as to why alcohol produces such radically different outcomes for drinkers – how is it that some individuals can drink for their entire adult life without developing compulsive habits, while others transition quickly to problem drinking?

Now, a new study from neuroscientists at Vanderbilt and The Salk Institute is providing initial answers to those long-standing scientific questions and a new method for researching what causes this transition from moderate to compulsive alcohol consumption.

The paper appears this week in Science.

“In our lab, we’re focused on the neuroscience of addiction and understanding how neural activity patterns give rise to compulsive drug and alcohol use,” said Cody Siciliano, assistant professor of pharmacology and author on the study. “In this study, we initially sought to understand how the brain is altered by binge drinking to drive compulsive alcohol consumption. In the process, we stumbled across a surprising finding where we were actually able to predict which subjects would become compulsive based on neural activity during the very first time they drank.”

Using a behavioral model in mice, the team presents findings showing that even when subjects are given the same opportunity to drink, they split into distinct categories based on characteristics: light, heavy and compulsive binge drinkers (that is, those that continued to drink despite it resulting in a negative outcome).

The team began by recreating a drinking scenario (called a “binge-induced compulsion task”) to assess how predisposition interacts with experience to produce compulsive drinking. They tracked compulsive alcohol drinking during these first drinking experiences, and again at later timepoints.

Using cellular-resolution calcium imaging and miniature microscopes, the researchers tracked the luminescence of the activity in neurons during the very first time the subjects drank alcohol. The brighter and more active the neurons became, the less likely the subject would be to go on to develop compulsive drinking behaviors. In contrast, the neurons in drinkers predisposed for compulsive behavior quieted and decreased activity during drinking events.

Interestingly, the differences in neural activity were observed during the very first drinking experience, well before compulsive behaviors emerged, allowing researchers to predict ahead of time which subjects would go on to display problem drinking behaviors.

As a result, the findings helped construct a novel behavioral model, and the team identified the specific cortical-brainstem circuit that serves as both a biomarker and a cellular platform for the eventual development of compulsive drinking behavior.

According to Siciliano, the biomarker and platform findings not only have implications on the future of alcohol addiction studies – but on other substance abuse studies, as well.

“We developed this model to study the path to alcohol use disorder, but we plan to apply a similar framework to advance our understanding of compulsive use of other substances.”

###

The research was supported by the National Institutes of Health (F32 MH111216 and RO1-MH102441), the National Institute on Drug Abuse (K99 DA045103), the JPB Foundation, New York Stem Cell Foundation, the NIH Director’s New Innovator Award (DP2-DK102256) and Pioneer Award (DP1-AT009925).

Media Contact
Spencer Turney
[email protected]
901-596-9136

Related Journal Article

http://dx.doi.org/10.1126/science.aay1186

Tags: AddictionMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Inhibitory Control Training to Curb Binge Eating

September 2, 2025

Chickpea Extract: Antitumor Agent Against Ehrlich Carcinoma

September 2, 2025

Optimizing 1,2,4-Oxadiazole for Diverse Nematicide Discovery

September 2, 2025

SOX2 Rewires Lipid Metabolism in Esophageal Cancer

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pan-Cancer Study Highlights ZNF132’s Role in Colorectal Cancer

Unlocking Amaryllidaceae: Hidden Chemistry and Biology

Inhibitory Control Training to Curb Binge Eating

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.