• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What kind of animal transports the seeds of the world’s smallest fruit-bearing plants?

Bioengineer by Bioengineer
August 21, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Novel seed dispersal system of a mushroom-like non-photosynthetic plant

IMAGE

Credit: Kenji Suetsugu

Balanophora have some of the smallest fruits among angiosperms, leading researchers to question how the seeds of these plants are dispersed. However, very little is currently known about their seed dispersal system. Associate Professor SUETSUGU Kenji (Kobe University Graduate School of Science) documents an unrecognized seed dispersal mutualism between the peculiar, mushroom-like non-photosynthetic plant Balanophora yakushimensis and its avian visitors. The birds obtain nutrients, not from the tiny undernourished fruits, but from the larger fleshy bracts, while B. yakushimensis plants benefit from the seed dispersal. In contrast to well-studied fleshy-fruited plants, the dry-fruited Balanophora species has adopted an avian seed dispersal mutualism through its fleshy bracts, which act as both visual attractants and nutritional rewards. These findings were published on 19 August, 2020 in ‘Ecology’.

The color green is a defining feature of the plant kingdom, and plants are mostly assumed to be autotrophs that can make their own food from simple inorganic substances such as carbon dioxide. Therefore, the biological oddities of non-photosynthetic plants have long attracted the attention of naturalists. The genus Balanophora comprises partially or entirely subterranean non-photosynthetic plants with extremely reduced morphological features. Just like the most famous parasitic plant Rafflesia, Balanophora mooch water and nutrients off the host plants they are attached to. Consisting of highly specialized root parasites, Balanophora is definitely one of the most unusual plant genera (Figure 1).

Recent studies have suggested that the evolutionary transition to full heterotrophy is a complex process, although, superficially, it may seem like a loss of photosynthetic ability. One of the most significant characteristics is the extreme reduction in the size and complexity of their seeds. In fact, Balanophora infructescences contain 100,000 to 1,000,000 tiny dry fruits situated at the base of a fleshy, club-shaped transformed bracts (Figure 2). As Balanophora fruits are some of the smallest among angiosperms, the fundamental question arises as to what mode of seed dispersal occurs in these plants.

Yet surprisingly, almost nothing is known about the seed dispersal system of Balanophora, despite this being one of the most important aspects of plant biology. Due to Balanophora infructescences being morphologically similar to mushrooms, it had been assumed that mycophagous rodents were its main seed dispersers. However, the lack of information about the animals that actually feed on Balanophora fruits has prevented the elucidation of the seed dispersal system employed by the group.

Suetsugu studied the B. yakushimensis seed dispersal system in the understory of the temperate forests on Yakushima Island, Kagoshima Prefecture, Japan. Consequently, he documented a previously unnoticed seed dispersal mutualism between the dry-fruited B. yakushimensis and its avian visitors (Figure 3; Video). Even though plants have evolved various mechanisms to mediate seed dispersal by animals, the predominant strategy is the production of fleshy fruits with embedded seeds. However, B. yakushimensis have adopted alternative approaches; not tiny undernourished fruits but larger fleshy bracts act as a tool to elicit seed dispersal. Since the bright red transformed bracts are much larger than their minute fruits, they should function as the primary visual attractants and edible rewards for birds. Overall, the study documents a previously unrecorded seed dispersal mutualism; avian visitors obtain nutrients from transformed bracts, while B. yakushimensis plants benefit from seed dispersal. Further studies on the seed dispersal systems of other Balanophora members will provide greater insights into ecology of these bizarre plants.

###

Video
Video showing the Red-flanked bluetail Tarsiger cyanurus simultaneously consuming both the fleshy bracts and dry fruits of Balanophora yakushimensis: https://www.youtube.com/watch?v=_VF5nYSBaas

Journal Information
Title:
“A specialized avian seed dispersal system in a dry-fruited non-photosynthetic plant, Balanophora yakushimensis”
DOI: https://doi.org/10.1002/ecy.3129
Authors:
Kenji Suetsugu
Journal:
Ecology

Media Contact
Verity Townsend
[email protected]

Original Source

https://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2020_08_21_01.html

Related Journal Article

http://dx.doi.org/10.1002/ecy.3129

Tags: BiodiversityBiologyEcology/EnvironmentMycologyPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.