• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

What if ceramics were ductile?

Bioengineer by Bioengineer
October 27, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Making of ductile ceramics  is a hard task. Plasticity in ceramics is rarely observed and typically requires special conditions such as extreme temperatures to be plausible. Therefore, instead on denting, your ceramic coffee mug will fracture into pieces when dropped on a hard floor.

Erkka J. Frankberg

Credit: Tampere University

Making of ductile ceramics  is a hard task. Plasticity in ceramics is rarely observed and typically requires special conditions such as extreme temperatures to be plausible. Therefore, instead on denting, your ceramic coffee mug will fracture into pieces when dropped on a hard floor.

In his article, Dr. Erkka J. Frankberg, a Finland based expert on plasticity of ceramics, comments some of the latest findings regarding room temperature plasticity in ceramics, reported by J. Zhang et al. in the Science 378, 371 (2022). In his commentary, Frankberg paints a broader view on the potential benefits if such ductile ceramics could be made possible and scaled for commercial use, possibly ushering in a new stone age.

Why would it be important to discover ceramics that are ductile at room temperature? It is due to the atoms themselves and the bonding between them. Ceramics have ionic and covalent bonding between the atoms that significantly differ from, for example, bonds in metal alloys. One major difference is that the ionic and covalent atom bonds are among the strongest we know. As a result, in theory, ceramics should be among the strongest engineering materials that exist.

“The catch is this: while the bonds are strong, they also prevent atoms from easily moving around in the material, and this movement is needed to create plasticity, or in other words, a permanent change in the perceived shape of the material. Without plasticity, unfortunately, ceramics fracture well below their theoretical strength and, in practice, often have lower ultimate strength than many metal alloys commonly used in engineering,” Frankberg says.

As a demonstration of the potential of ductile ceramics, Zhang et al. show that if silicon nitride (Si3N4), a ceramic material, is engineered to exhibit plasticity, it can exhibit a whopping ultimate strength of ~11 GPa prior to fracture. This is around 10 times stronger than some common grades of high strength steel!

What could ultra-strong ductile ceramics give us?

“Higher strength means less material needed to build moving machines such as vehicles and robots. Less material means lower inertia, meaning lower energy consumption and higher efficiency for all moving machinery. Higher wear and corrosion resistance of ceramics would allow higher up-time in these applications, which enables economic benefits,” Frankberg points out.

Humanity has a constant need for ever stronger engineering materials, because of the large cross-cutting impact it would have, improving the energy efficiency of society.

“Because of the softer bonding, there is a hard limit to how strong materials we can create from metals. To reach the next level in strength, ceramics are a good candidate,” he states.

While the results of Zhang et al. are spectacular demonstration of the potential of ductile ceramics, the results are demonstrated at the nanoscale, such as most similar results in the field. Therefore, a long and winding road is still ahead to realize the dream of flexible ceramics, which essentially needs that these results are repeated in a bulkier material.

“But every discovery of a new room temperature plasticity mechanism, such as that presented by Zhang et al., keeps us holding on to the dream of flexible ceramics,” Erkka J. Frankberg sums up.

 



Journal

Science

DOI

10.1126/science.ade7637

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

A ceramic that bends instead of shattering

Article Publication Date

28-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Photo

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

January 30, 2023
Genetic mixing between warm-adapted and cool-adapted species can reduce the risk of extinction due to climate change

Mixing between species reduces vulnerability to climate change

January 30, 2023

NSF’s NCSES releases report on diversity trends in STEM workforce and education

January 30, 2023

New vaccine platform could ease development, delivery of virus-fighters

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

Mixing between species reduces vulnerability to climate change

NSF’s NCSES releases report on diversity trends in STEM workforce and education

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In