• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

West coast wildfires create rare opportunity to track black carbon

Bioengineer by Bioengineer
December 17, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research aims to better understand the impact of wildfires on the global carbon cycle

IMAGE

Credit: Rensselaer Polytechnic Institute

TROY, N.Y. — A blaze that burned through a natural research area — already tricked out with instruments and sensors — offered an unexpected opportunity to learn about the global carbon cycle. The 2020 wildfires on the West Coast stymied planned research at the University of California Blue Oak Ranch Reserve, but also created a rare chance to catch the first link in the chain that connects fire-derived “black carbon” from a charred hillside with the deep ocean.

“They set up all the instruments, and then it burned. It’s devastating. At the same time, it’s created the perfect opportunity to understand the impact of wildfires on the global carbon cycle and global warming,” said Sasha Wagner, an assistant professor of earth and environmental sciences at Rensselaer Polytechnic Institute, and researcher on a $67,000 National Science Foundation Rapid Response Research (RAPID) project in the area of the Santa Clara Unit Lightning Complex Fire.

Wagner has teamed up with principal investigator Margaret Zimmer, a University of California Santa Cruz hydrologist who had been studying the path of water starting from rainfall on a hillside in Blue Oak reserve. Zimmer’s lab equipped the hillside with multiple instruments, including sensors that detect and measure the flow of water, and automated sample collecting equipment. A wildfire burned through the site in August 2020, but the instruments were resurrected with minor repairs, and researchers are now anticipating the first rainfall to follow the fire.

“What we call the ‘first flush’ of carbon and nutrients from the land after a wildfire has never been captured before,” said Wagner, a geochemist and expert in black carbon.

In the global carbon cycle, rivers ferry carbon from land to the oceans as half of all dissolved organic matter — the infusion of living, dead, and decaying particulate that gives rivers their tea-like color. Derived from organic materials burned in events like wildfires and fossil fuel combustion, black carbon is chemically distinct and reacts differently than other carbons found in dissolved organic matter. Researchers had long assumed that, once transformed by fire, black carbon was largely inert, rejoining the carbon cycle far more slowly than other forms of carbon.

“For many years, we thought that once you produced charcoal, it just sat there forever. But now we see that the combination of fire and rainfall can pulse out a huge amount of black carbon,” Wagner said. “So what’s in that first flush? When does it get to the ocean? Is the fraction of black carbon that arrives in the ocean more or less reactive than what was flushed from the landscape? Part of filling in these gaps on this aspect of the carbon cycle requires us to track black carbon from the headwaters through the larger branches of the river into coastal environments.”

With mountains that drain directly into the sea, southern California is the perfect location for a clean track of the connection between charring on the landscape and the ocean. And by combining organic geochemical analysis with hydrological analysis, the research will create an informed picture of how black carbon is moving from the hillside overland or into groundwater.

“These kinds of connections are really important in telling the story of what’s happening in streams, extrapolating more broadly to what’s happening in other areas, and also making predictions should a wildfire happen again,” Wagner said.

###

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,600 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Media Contact
Mary Martialay
[email protected]

Original Source

https://news.rpi.edu/content/2020/12/17/west-coast-wildfires-create-rare-opportunity-track-black-carbon

Tags: BiochemistryClimate ChangeEarth ScienceHydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

September 5, 2025
Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

September 5, 2025

Discovery of Protostellar Jets in Milky Way’s Outer Regions Unveils Universal Star Formation Processes

September 5, 2025

Electron-Acceptor Engineering Tunes Dye Excitation Dynamics for Optimal Synergistic Photodynamic and Mild-Photothermal Tumor Therapy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailoring ZnO Nanostructures with Microwave-Assisted Synthesis

Anticancer Effects of R. tridentata on Prostate Cells

GFP-Tagged PRRSV Clones Developed via TAR Cloning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.