• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, December 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Weevil may save Great Britain up to £16.8m a year in management of invasive aquatic fern

Bioengineer by Bioengineer
November 13, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new CABI-led study suggests that a tiny weevil (Stenopelmus rufinasus) has huge benefits in saving Great Britain up to £16.8m in annual management costs of the invasive aquatic fern Azolla filiculoides.

The invasive aquatic fern Azolla filiculoides

Credit: CABI

A new CABI-led study suggests that a tiny weevil (Stenopelmus rufinasus) has huge benefits in saving Great Britain up to £16.8m in annual management costs of the invasive aquatic fern Azolla filiculoides.

The research, published in the CABI Agriculture and Bioscience journal, estimates that without any biocontrol the expected yearly costs of managing A. filiculoides would range from £8.4m to £16.9m.

The scientists say that the impacts of naturalised S. rufinasus populations on A. filiculoides alone could be expected to reduce management costs to £800,000 to £1.6m a year.

However, they estimate A. filiculoides management costs to be lower still due to additional augmentative releases of the weevil that take place each summer, resulting in annual management costs of £31,500 to £45,800.

Azolla filiculoides, a type of floating water fern, was introduced to Great Britain at the end of the 19th century for ornamental use in ponds and aquaria. But its introduction into the wild has meant it has spread rapidly throughout England and Wales and to a lesser degree, Scotland.

The invasive aquatic fern outcompetes native species by forming a dense covering on the surface of the water. It blocks out light and can also deoxygenate water. A. filiculoides can also block canals, drains and overflows and may lead to an increased risk of flooding. It can affect irrigation systems – both by blocking their water supply and by reducing water quality.

It has been banned from sale in England and Wales since April 2014.

Its specialist natural enemy, S. rufinasus, was first recorded in 1921. It is suspected to have been introduced from America as a stowaway on A. filiculoides. Stenopelmus rufinasus is also reported to be present in numerous additional European countries where A. filiculoides is present.

The study sought to estimate the management cost savings resulting from the presence of S. rufinasus as a biocontrol agent in Great Britain. This includes the value of additional augmentative releases of the weevil made since the mid-2000s, compared with the expected costs of control in the absence of S. rufinasus.

Corin Pratt, lead author and Invasive Species Management Researcher at CABI, said, “The unintentional introduction of the weevil S. rufinasus to Great Britain is estimated to have resulted in millions of pounds of savings annually in management costs for A. filiculoides.

“Additional augmentative releases of the weevil provide further net cost savings, tackling A. filiculoides outbreaks and bolstering naturalised populations.

“The use of herbicides in the aquatic environment is likely greatly reduced due to A. filiculoides biocontrol. Although somewhat climate-limited at present in Great Britain, climate change may result in even more effective biocontrol of A. filiculoides by S. rufinasus.

“This has been observed in warmer regions such as South Africa, where the plant is no longer considered a threat since the introduction of S. rufinasus.”

The scientists conclude by arguing that in the absence of the specialist weevil S. rufinasus, A. filiculoides could be expected to be the dominant aquatic macrophyte in Great Britain. This would require extensive, costly management and likely widespread use of herbicides in the aquatic environment.

They state that the estimated benefit to cost ratio of augmentative S. rufinasus releases to be of 43.7:1 to 88.4:1

 

Full paper reference

Corin Pratt, Suzy Wood, Kate Constantine, ‘A century of Azolla filiculoides biocontrol: The economic value of Stenopelmus rufinasus to Great Britain,’ CABI Agriculture and Bioscience, 14 November 2022, DOI: 10.1186/s43170-022-00136-0

The paper is available to view open access from 00:01HRS UK time, 14 November 2022 here: https://cabiagbio.biomedcentral.com/articles/10.1186/s43170-022-00136-0



Journal

CABI Agriculture and Bioscience

DOI

10.1186/s43170-022-00136-0

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A century of Azolla filiculoides biocontrol: The economic value of Stenopelmus rufinasus to Great Britain

Article Publication Date

14-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Hemoglobin changes over time after stimulus.

Tracing how the infant brain responds to touch with near-infrared spectroscopy

December 9, 2023
Anne Peery, MD, MSCR, associate professor of medicine, UNC School of Medicine

Doctors discover many patients at UNC’s Inflammatory Bowel Disease Clinic screen positive for malnutrition

December 8, 2023

When is an aurora not an aurora?

December 8, 2023

A dynamic picture of how we respond to high or low oxygen levels

December 8, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracing how the infant brain responds to touch with near-infrared spectroscopy

Doctors discover many patients at UNC’s Inflammatory Bowel Disease Clinic screen positive for malnutrition

When is an aurora not an aurora?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In