• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, December 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Wearable device makes memories and powers up with the flex of a finger

Bioengineer by Bioengineer
October 18, 2023
in Science News
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have invented an experimental wearable device that generates power from a user’s bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

The team’s wearable innovation

Credit: Credit: Seamus Daniel, RMIT University

Researchers have invented an experimental wearable device that generates power from a user’s bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

The innovation features a single nanomaterial incorporated into a stretchable casing fitted to a person’s finger. The nanomaterial enabled the device to generate power with the user bending their finger.

The super-thin material also allows the device to perform memory tasks, as outlined below.

Multifunctional devices normally require several materials in layers, which involves the time-consuming challenge of stacking nanomaterials with high precision.

The team, led by RMIT University and the University of Melbourne in collaboration with other Australian and international institutions, made the proof-of-concept device with the rust of a low-temperature liquid metal called bismuth, which is safe and well suited for wearable applications.

Senior lead researcher Dr Ali Zavabeti said the invention could be developed to create medical wearables that monitor vital signs – incorporating the researchers’ recent work with a similar material that enabled gas sensing – and memorise personalised data.

“The innovation was used in our experiments to write, erase and re-write images in nanoscale, so it could feasibly be developed to one day encode bank notes, original art or authentication services,” said Zavabeti, an engineer from RMIT and the University of Melbourne.

The team’s research is published in Advanced Functional Materials.

What did the device achieve in experiments?

The team says the study revealed their invention exhibits “exceptional responsiveness to movements associated with human activities, such as stretching, making it a promising candidate for wearable technologies”.

“We tested natural motion behaviour with the device attached to a finger joint, with an average output peak of about 1 volt,” Zavabeti said.

The device was able to perform the memory functions of “read”, “write” and “erase”, which included using the RMIT logo and a square-shaped insignia as demonstrations of these capabilities. The device, which was not worn by a user during these memory experiments, wrote and stored the logo and symbol in a space that could fit 20 times within the width of a human hair.  

How did the team make the invention and how does it work?

Lead author and PhD student Xiangyang Guo from RMIT, said the team can print layers of bismuth rust, otherwise known as oxide, in just a few seconds.

“We fundamentally investigated this instant-printing technique for the first time using low-melting point liquid metals,” said Guo, who works under the supervision of Dr Ali Zavabeti and Professor Yongxiang Li.

The team demonstrated that engineering materials at the nanoscale can present enormous opportunities in a range of functions, from sensing and energy harvesting to memory applications, he said.

“Bismuth oxide can be engineered to provide memory functionality, which is critical for many applications,” Guo said.

“The material can act as a semiconductor, meaning it can be used for computation.

“It is a nanogenerator, meaning it is energy efficient with a green energy supply from environmental vibrations and mechanical movements.”

Guo said bismuth oxide was likely to cause less irritation to skin, compared with silicon, and it was durable, so it was stretchable and can be integrated into wearable technologies.

Next steps

The team is keen to collaborate with industry partners to further develop and prototype this invention.

The researchers plan to adapt their approach for other low-temperature liquid and solid metals and alloys that could be developed for personalised wearables.

Support for the research

The Australian Research Council funded the research, which was also supported by the National Computational Infrastructure, as well as the Microscopy and Microanalysis Facility (RMMF) and Micro Nano Research Facility (MNRF) at RMIT and the Department of Chemical Engineering and Physics at the University of Melbourne.

The team included researchers from the University of Toronto, Western Sydney University, University of Sydney, University of New South Wales and Australian National University.

The researchers’ peer-reviewed article, “Multi-Functional Atomically Thin Oxides from Bismuth Liquid Metal”, is published in Advanced Functional Materials (DOI: 10.1002/adfm.202307348).

Researchers have invented an experimental wearable device that generates power from a user’s bending finger and can create and store memories, in a promising step towards health monitoring and other technologies.

The innovation features a single nanomaterial incorporated into a stretchable casing fitted to a person’s finger. The nanomaterial enabled the device to generate power with the user bending their finger.

The super-thin material also allows the device to perform memory tasks, as outlined below.

Multifunctional devices normally require several materials in layers, which involves the time-consuming challenge of stacking nanomaterials with high precision.

The team, led by RMIT University and the University of Melbourne in collaboration with other Australian and international institutions, made the proof-of-concept device with the rust of a low-temperature liquid metal called bismuth, which is safe and well suited for wearable applications.

Senior lead researcher Dr Ali Zavabeti said the invention could be developed to create medical wearables that monitor vital signs – incorporating the researchers’ recent work with a similar material that enabled gas sensing – and memorise personalised data.

“The innovation was used in our experiments to write, erase and re-write images in nanoscale, so it could feasibly be developed to one day encode bank notes, original art or authentication services,” said Zavabeti, an engineer from RMIT and the University of Melbourne.

The team’s research is published in Advanced Functional Materials.

What did the device achieve in experiments?

The team says the study revealed their invention exhibits “exceptional responsiveness to movements associated with human activities, such as stretching, making it a promising candidate for wearable technologies”.

“We tested natural motion behaviour with the device attached to a finger joint, with an average output peak of about 1 volt,” Zavabeti said.

The device was able to perform the memory functions of “read”, “write” and “erase”, which included using the RMIT logo and a square-shaped insignia as demonstrations of these capabilities. The device, which was not worn by a user during these memory experiments, wrote and stored the logo and symbol in a space that could fit 20 times within the width of a human hair.  

How did the team make the invention and how does it work?

Lead author and PhD student Xiangyang Guo from RMIT, said the team can print layers of bismuth rust, otherwise known as oxide, in just a few seconds.

“We fundamentally investigated this instant-printing technique for the first time using low-melting point liquid metals,” said Guo, who works under the supervision of Dr Ali Zavabeti and Professor Yongxiang Li.

The team demonstrated that engineering materials at the nanoscale can present enormous opportunities in a range of functions, from sensing and energy harvesting to memory applications, he said.

“Bismuth oxide can be engineered to provide memory functionality, which is critical for many applications,” Guo said.

“The material can act as a semiconductor, meaning it can be used for computation.

“It is a nanogenerator, meaning it is energy efficient with a green energy supply from environmental vibrations and mechanical movements.”

Guo said bismuth oxide was likely to cause less irritation to skin, compared with silicon, and it was durable, so it was stretchable and can be integrated into wearable technologies.

Next steps

The team is keen to collaborate with industry partners to further develop and prototype this invention.

The researchers plan to adapt their approach for other low-temperature liquid and solid metals and alloys that could be developed for personalised wearables.

Support for the research

The Australian Research Council funded the research, which was also supported by the National Computational Infrastructure, as well as the Microscopy and Microanalysis Facility (RMMF) and Micro Nano Research Facility (MNRF) at RMIT and the Department of Chemical Engineering and Physics at the University of Melbourne.

The team included researchers from the University of Toronto, Western Sydney University, University of Sydney, University of New South Wales and Australian National University.

The researchers’ peer-reviewed article, “Multi-Functional Atomically Thin Oxides from Bismuth Liquid Metal”, is published in Advanced Functional Materials (DOI: 10.1002/adfm.202307348).

MULTIMEDIA AVAILABLE

This video (https://www.youtube.com/watch?v=zikAX3MUt1Q) can be shared by media.

In addition to the video, high-res photos and b-roll footage related to the research are available for download here: https://cloudstor.aarnet.edu.au/plus/s/1IJ4KEHw9nlKMqG

 



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202307348

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Multi-Functional Atomically Thin Oxides from Bismuth Liquid Metal

Article Publication Date

19-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Cemetery of the Hospital of St. John the Evangelist

‘Bone biographies’ reveal lives of medieval England’s common people – and illuminate early benefits system

December 1, 2023
Figure 1

One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions

December 1, 2023

Eating beans improves gut health, regulates immune and inflammatory processes in colorectal cancer survivors

December 1, 2023

Arizona State, Idaho National Laboratory team to boost clean energy research

November 30, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    83 shares
    Share 33 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

‘Bone biographies’ reveal lives of medieval England’s common people – and illuminate early benefits system

One of the largest magnetic storms in history quantified: Aurorae covered much of the night sky from the Tropics to the Polar Regions

Eating beans improves gut health, regulates immune and inflammatory processes in colorectal cancer survivors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In