• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

We finally know why quantum ‘strange metals’ are so strange

Bioengineer by Bioengineer
August 17, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For nearly 40 years, materials called ‘strange metals’ have flummoxed quantum physicists, defying explanation by operating outside the normal rules of electricity.

Illustration

Credit: Lucy Reading-Ikkanda/Simons Foundation

For nearly 40 years, materials called ‘strange metals’ have flummoxed quantum physicists, defying explanation by operating outside the normal rules of electricity.

Now research led by Aavishkar Patel of the Flatiron Institute’s Center for Computational Quantum Physics (CCQ) in New York City has identified, at long last, a mechanism that explains the characteristic properties of strange metals.

In the August 18 issue of Science, Patel and his colleagues present their universal theory of why strange metals are so weird — a solution to one of the greatest unsolved problems in condensed matter physics. Strange metal behavior is found in many quantum materials,  including some that, with small changes, can become superconductors (materials in which electrons flow with zero resistance at low enough temperatures). That relationship suggests that understanding strange metals could help researchers identify new kinds of superconductivity.

The surprisingly simple new theory explains many oddities about strange metals, such as why the change in electrical resistivity — a measure of how easily electrons can flow through the material as electrical current — is directly proportional to the temperature, even down to extremely low temperatures. That relationship means that a strange metal resists the flow of electrons more than an ordinary metal such as gold or copper at the same temperature.

The new theory is based on a combination of two properties of strange metals. First, their electrons can become quantum mechanically entangled with one another, binding their fates, and they remain entangled even when distantly separated. Second, strange metals have a nonuniform, patchwork-like arrangement of atoms.

Neither property alone explains the oddities of strange metals, but taken together, “everything just falls into place,” says Patel, who works as a Flatiron Research Fellow at the CCQ. The irregularity of a strange metal’s atomic layout means that the electron entanglements vary depending on where in the material the entanglement took place. That variety adds randomness to the momentum of the electrons as they move through the material and interact with each other. Instead of all flowing together, the electrons knock each other around in all directions, resulting in electrical resistance. Since the electrons collide more frequently the hotter the material gets, the electrical resistance rises alongside the temperature.

“This interplay of entanglement and nonuniformity is a new effect; it hadn’t been considered ever before for any material,” Patel says. “In retrospect, it’s an extremely simple thing. For a long time, people were making this whole story of strange metals unnecessarily complicated, and that was just not the right thing to do.”

Patel says that a better understanding of strange metals could help physicists develop and fine-tune new superconductors for applications such as quantum computers.

“There are instances where something wants to go superconducting but doesn’t quite do so, because superconductivity is blocked by another competing state,” he says. “One could ask then if the presence of these nonuniformities can destroy these other states that superconductivity competes with and leave the road open for superconductivity.”

Now that strange metals are a bit less strange, the name might seem less fitting than it once was. “I would like to call them unusual metals at this point, not strange,” Patel says.

Patel co-authored the new study with Haoyu Guo, Ilya Esterlis and Subir Sachdev of Harvard University.


ABOUT THE FLATIRON INSTITUTE

The Flatiron Institute is the research division of the Simons Foundation. The institute’s mission is to advance scientific research through computational methods, including data analysis, theory, modeling and simulation. The institute’s Center for Computational Quantum Physics aims to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and to use the solutions to predict the behavior of materials and molecules of scientific and technological interest.



Journal

Science

DOI

10.1126/science.abq6011

Subject of Research

Not applicable

Article Title

Universal theory of strange metals from spatially random interactions

Article Publication Date

18-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In