• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Watching how plants make oxygen

Bioengineer by Bioengineer
November 21, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Johannes Messinger

In a new study, an international team of researchers made significant progress in visualizing the process how plants split water to produce oxygen. The results are published in Nature.

For mitigating climate change plants play a crucial role: they use sunlight to remove the greenhouse gas carbon dioxide from the atmosphere and convert it into biomass. By splitting water, they also produce in this process the oxygen we breathe. This latter process may turn out to be even more important for saving the climate: if understood completely, it will lead researchers to the development of devices that produce clean hydrogen fuel from solar energy and water, with much higher efficiency than plants can produce biomass.

In collaboration with an international team of researchers, professor Johannes Messinger, who recently joint the Molecular Biomimetics Program at Uppsala University, has now found a way how to visualize this reaction at high resolution using the X-ray free-electron laser at SLAC National Accelerator Laboratory and Stanford University. For this work the research consortium developed new ways to grow microcrystals of photosystem II, the protein complex that in plants is responsible for producing oxygen from water using sunlight. These microcrystals were then placed on a conveyor belt using technology akin to ink-jet printing. On the belt, the crystals were illuminated with laser flashes of green light, to start the water splitting reaction cycle. The structure of these activated states were subsequently visualized by hitting the crystals at the end of the belt with ultrafast X-ray pulses.

'This work is a breakthrough. It paves the way to study, step-by-step, how an oxygen molecule is formed from two water molecules.' says Johannes Messinger, who is one of the lead authors of this study.

In the report, the authors were able to resolve structural differences between two of the states in photosystem II that are involved in water splitting. To reach this goal, research teams from the Lawrence Berkeley National Laboratory, University of Stanford, Humboldt University Berlin, UmeƄ University and Uppsala University collaborated for five years.

'We are now all set up to tackle the final mysteries of how plants make oxygen – a dream has come true', says Johannes Messinger.

###

Media Contact

Johannes Messinger
[email protected]
46-184-713-671
@UU_University

http://www.uu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating the Transition Module for Residential Care

October 28, 2025

M2 Macrophages Shield Lung Cancer from Plasma Stress

October 28, 2025

Probabilistic UAV Activation in Stochastic Geometry Networks

October 28, 2025

Advancing Lithium-Ion Battery Health Estimation with AI

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Transition Module for Residential Care

M2 Macrophages Shield Lung Cancer from Plasma Stress

Probabilistic UAV Activation in Stochastic Geometry Networks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.