• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Watch this person-shaped robot liquify and escape jail, all with the power of magnets

Bioengineer by Bioengineer
January 25, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Inspired by sea cucumbers, engineers have designed miniature robots that rapidly and reversibly shift between liquid and solid states. On top of being able to shape-shift, the robots are magnetic and can conduct electricity. The researchers put the robots through an obstacle course of mobility and shape-morphing tests in a study publishing January 25 in the journal Matter.

Person-shaped robot liquifies to escape cage after which its body is reformed.

Credit: Wang and Pan et al.

Inspired by sea cucumbers, engineers have designed miniature robots that rapidly and reversibly shift between liquid and solid states. On top of being able to shape-shift, the robots are magnetic and can conduct electricity. The researchers put the robots through an obstacle course of mobility and shape-morphing tests in a study publishing January 25 in the journal Matter.

Where traditional robots are hard-bodied and stiff, “soft” robots have the opposite problem; they are flexible but weak, and their movements are difficult to control. “Giving robots the ability to switch between liquid and solid states endows them with more functionality,” says Chengfeng Pan (@ChengfengPan), an engineer at The Chinese University of Hong Kong who led the study.

The team created the new phase-shifting material—dubbed a “magnetoactive solid-liquid phase transitional machine”—by embedding magnetic particles in gallium, a metal with a very low melting point (29.8 °C).

“The magnetic particles here have two roles,” says senior author and mechanical engineer Carmel Majidi (@SoftMachinesLab) of Carnegie Mellon University. “One is that they make the material responsive to an alternating magnetic field, so you can, through induction, heat up the material and cause the phase change. But the magnetic particles also give the robots mobility and the ability to move in response to the magnetic field.”

This is in contrast to existing phase-shifting materials that rely on heat guns, electrical currents, or other external heat sources to induce solid-to-liquid transformation. The new material also boasts an extremely fluid liquid phase compared to other phase-changing materials, whose “liquid” phases are considerably more viscous.

Before exploring potential applications, the team tested the material’s mobility and strength in a variety of contexts. With the aid of a magnetic field, the robots jumped over moats, climbed walls, and even split in half to cooperatively move other objects around before coalescing back together. In one video, a robot shaped like a person liquifies to ooze through a grid after which it is extracted and remolded back into its original shape.

“Now, we’re pushing this material system in more practical ways to solve some very specific medical and engineering problems,” says Pan.

On the biomedical side, the team used the robots to remove a foreign object from a model stomach and to deliver drugs on-demand into the same stomach. They also demonstrate how the material could work as smart soldering robots for wireless circuit assembly and repair (by oozing into hard-to-reach circuits and acting as both solder and conductor) and as a universal mechanical “screw” for assembling parts in hard-to-reach spaces (by melting into the threaded screw socket and then solidifying; no actual screwing required.)

“Future work should further explore how these robots could be used within a biomedical context,” says Majidi. “What we’re showing are just one-off demonstrations, proofs of concept, but much more study will be required to delve into how this could actually be used for drug delivery or for removing foreign objects.”

###

This research was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, the Special Support Plan for High Level Talents in Guangdong Province, and the Key Research and Development Plan of Guangdong Province.

Matter, Wang and Pan et al. ‘Magnetoactive Liquid-Solid Phase Transitional Matter,’ https://www.cell.com/matter/fulltext/S2590-2385(22)00693-2

Matter (@Matter_CP), published by Cell Press, is a new journal for multi-disciplinary, transformative materials sciences research. Papers explore scientific advancements across the spectrum of materials development—from fundamentals to application, from nano to macro. Visit: https://www.cell.com/matter. To receive Cell Press media alerts, please contact [email protected]



Journal

Matter

DOI

10.1016/j.matt.2022.12.003

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Magnetoactive Liquid-Solid Phase Transitional Matter

Article Publication Date

25-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In