• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Voyager spacecraft detect new type of solar electron burst

Bioengineer by Bioengineer
December 3, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists report accelerated electrons linked with cosmic rays

IMAGE

Credit: NASA/JPL

More than 40 years since they launched, the Voyager spacecraft are still making discoveries.

In a new study, a team of physicists led by the University of Iowa report the first detection of bursts of cosmic ray electrons accelerated by shock waves originating from major eruptions on the sun. The detection, made by instruments onboard both the Voyager 1 and Voyager 2 spacecraft, occurred as the Voyagers continue their journey outward through interstellar space, thus making them the first craft to record this unique physics in the realm between stars.

These newly detected electron bursts are like an advanced guard accelerated along magnetic field lines in the interstellar medium; the electrons travel at nearly the speed of light, some 670 times faster than the shock waves that initially propelled them. The bursts were followed by plasma wave oscillations caused by lower-energy electrons arriving at the Voyagers’ instruments days later–and finally, in some cases, the shock wave itself as long as a month after that.

The shock waves emanated from coronal mass ejections, expulsions of hot gas and energy that move outward from the sun at about one million miles per hour. Even at those speeds, it takes more than a year for the shock waves to reach the Voyager spacecraft, which have traveled further from the sun (more than 14 billion miles and counting) than any human-made object.

“What we see here specifically is a certain mechanism whereby when the shock wave first contacts the interstellar magnetic field lines passing through the spacecraft, it reflects and accelerates some of the cosmic ray electrons,” says Don Gurnett, professor emeritus in physics and astronomy at Iowa and the study’s corresponding author. “We have identified through the cosmic ray instruments these are electrons that were reflected and accelerated by interstellar shocks propagating outward from energetic solar events at the sun. That is a new mechanism.”

The discovery could help physicists better understand the dynamics underpinning shock waves and cosmic radiation that come from flare stars (which can vary in brightness briefly due to violent activity on their surface) and exploding stars. The physics of such phenomena would be important to consider when sending astronauts on extended lunar or Martian excursions, for instance, during which they would be exposed to concentrations of cosmic rays far exceeding what we experience on Earth.

The physicists believe these electrons in the interstellar medium are reflected off of a strengthened magnetic field at the edge of the shock wave and subsequently accelerated by the motion of the shock wave. The reflected electrons then spiral along interstellar magnetic field lines, gaining speed as the distance between them and the shock increases.

In a 2014 paper in the journal Astrophysical Letters, physicists J.R. Jokipii and Jozsef Kota described theoretically how ions reflected from shock waves could be accelerated along interstellar magnetic field lines. The current study looks at bursts of electrons detected by the Voyager spacecraft that are thought to be accelerated by a similar process.

“The idea that shock waves accelerate particles is not new,” Gurnett says. “It all has to do with how it works, the mechanism. And the fact we detected it in a new realm, the interstellar medium, which is much different than in the solar wind where similar processes have been observed. No one has seen it with an interstellar shock wave, in a whole new pristine medium.”

###

The findings were published online in the Astronomical Journal, in a paper titled “A Foreshock Model for Interstellar Shocks of Solar Origin: Voyager 1 and 2 Observations.”

Co-authors include William Kurth from Iowa; Edward Stone and Alan Cummings from the California Institute of Technology; Bryant Heikkila, Nand Lal, and Leonard Burlaga from the NASA Goddard Space Flight Center; Stamatios Krimigis and Robert Decker from the Applied Physics Laboratory at Johns Hopkins University; and Norman Ness from the University of Delaware.

NASA funded the research.

Media Contact
Richard Lewis
[email protected]

Related Journal Article

http://dx.doi.org/10.3847/1538-3881/abc337

Tags: AstronomyAstrophysicsParticle PhysicsSatellite Missions/ShuttlesSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

Black Metal Could Significantly Enhance Solar Power Generation

Black Metal Could Significantly Enhance Solar Power Generation

August 12, 2025
Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

August 12, 2025

Tan Leads Investigation into Ferroelectric Oxides as Heterogeneous Photocatalysts for Ethane Dehydrogenation

August 12, 2025

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring the Connection Between Fatigue and Breast Cancer Recurrence

OU Researchers Investigate Impact of Cannabis on Post-Surgical Facial Wound Healing

Black Metal Could Significantly Enhance Solar Power Generation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.