• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Viruses rewire host cellular machinery to maximise viral production

Bioengineer by Bioengineer
August 29, 2022
in Biology
Reading Time: 3 mins read
0
Authors of the study
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Molecular Virology Research Group at Pompeu Fabra University (UPF), in collaboration with the Epitranscriptomics and RNA Dynamics group of the Center for Genomic Regulation (CRG), has discovered a new mechanism whereby viruses modify cellular machinery to better read the instructions in the genome of the invading virus and thus produce high amounts of viral progeny. The study has been published in Nature Communications and was led by Juana Díez.

Authors of the study

Credit: UPF

The Molecular Virology Research Group at Pompeu Fabra University (UPF), in collaboration with the Epitranscriptomics and RNA Dynamics group of the Center for Genomic Regulation (CRG), has discovered a new mechanism whereby viruses modify cellular machinery to better read the instructions in the genome of the invading virus and thus produce high amounts of viral progeny. The study has been published in Nature Communications and was led by Juana Díez.

Genes contain the information required for the formation of proteins, complex molecules that are essential for life, formed from amino acids. The reading of this information takes place in two main stages, on the one hand, transcription, in which the information of the gene (DNA) is transferred to a molecule called messenger RNA (mRNA). mRNA consists of a “text” formed by triplets of nucleotides (the letters GCT, CAT, etc.). Each triplet corresponds to an amino acid. The second phase is translation, in which a molecule called transfer RNA (tRNA) recognizes each triplet and acts as a translator by bringing the corresponding amino acid. Proteins are built via this process.

There are 61 codons and 20 amino acids, and so many triplets code for the same amino acid. Each organism preferably uses one of these triplets (optimal triplet) because it has a higher concentration of the tRNA that recognizes that triplet. Thus, when the “text” of the mRNA is enriched in optimal triplets, the proteins will be generated quickly and efficiently whereas when they are enriched in non-optimal triplets, the efficiency of the expression will decrease because the related tRNAs are scarce.

Viruses are very simple and in order to multiply and express their proteins they need to hijack the host’s cellular machinery. Viruses generate their own mRNA in the cells they infect, which the latter read and generate viral proteins to produce more viruses. But the mRNAs of many viruses, including SARS-CoV-2 and viruses transmitted by mosquitoes dengue, zika and chikungunya, are enriched in non-optimal triplets and still express viral proteins with great efficacy. “To address this dilemma, we have used the chikungunya virus as a model because its genome multiplies at extremely high levels”, explain Jennifer Jungfleisch and René Böetcher, co-authors of the study.

“Our findings show for the first time that viruses modify the host tRNA to adapt the host translation machinery to the text of the viral mRNA”, says Marc Talló, also co-author of the article. “In other words, the viral infection induces a change of language in the cell, so that it expresses the viral proteins very efficiently. As viral proteins are essential for the production of viruses, ultimately this change will be responsible for generating high numbers of viruses in the infected cell”, he adds.

“Although the study has focused on the chikungunya virus, our proposal is that the modification of tRNAs induced by viral infection is a general mechanism followed by many viruses”, explains Juana Díez, a full professor with the UPF Department of Medicine and Life Sciences.

“In addition, our results provide a basis for considering tRNA regulation as a new and promising therapeutic target for the development of broad-spectrum antivirals that are effective against multiple viruses”, Díez concludes. The study has involved the research group coordinated by Eva María Novoa at the CRG, and the other authors are Gemma Pérez-Vilaró and Andres Merits (Institute of Technology, University of Tartu).

Reference article:

Jungfleisch J et al. CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nature Communications. August, 2022. DOI: 10.1038/s41467-022-31835-x.



Journal

Nature Communications

DOI

10.1038/s41467-022-31835-x

Subject of Research

Cells

Article Title

CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome

Article Publication Date

11-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Key Genes for Fish Adaptation: Spotlight on Mechanisms

October 2, 2025
Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

October 2, 2025

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    69 shares
    Share 28 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics Alleviate Ovarian Angiogenesis in PCOS Models

Gene Variants Linked to Antipsychotic-Induced Movement Disorders

Key Genes for Fish Adaptation: Spotlight on Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.