• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Viruses Can Have Immune Systems

Bioengineer by Bioengineer
August 30, 2013
in NEWS
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
 
The phage used the stolen immune system to disable – and thus overcome – the cholera bacteria’s defense system against phages. Therefore, the phage can kill the cholera bacteria and multiply to produce more phage offspring, which can then kill more cholera bacteria. The study has dramatic implications for phage therapy, which is the use of phages to treat bacterial diseases. Developing phage therapy is particularly important because some bacteria, called superbugs, are resistant to most or all current antibiotics. 
 
Until now, scientists thought phages existed only as primitive particles of DNA or RNA and therefore lacked the sophistication of an adaptive immune system, which is a system that can respond rapidly to a nearly infinite variety of new challenges. Phages are viruses that prey exclusively on bacteria and each phage is parasitically mated to a specific type of bacteria. This study focused on a phage that attacks Vibrio cholerae, the bacterium responsible for cholera epidemics in humans.
 
Howard Hughes Medical Institute investigator Andrew Camilli, Ph.D., of Tufts University School of Medicine led the research team responsible for the surprising discovery.
 
First author Kimberley D. Seed, Ph.D., a postdoctoral fellow in Camilli’s lab, was analyzing DNA sequences of phages taken from stool samples from patients with cholera in Bangladesh when she identified genes for a functional immune system previously found only in some bacteria (and most Archaea, a separate domain of single-celled microorganisms).
 
To verify the findings, the researchers used phage lacking the adaptive immune system to infect a new strain of cholera bacteria that is naturally resistant to the phage. The phage were unable to adapt to and kill the cholera strain. They next infected the same strain of cholera bacteria with phage harboring the immune system, and observed that the phage rapidly adapted and thus gained the ability to kill the cholera bacteria. This work demonstrates that the immune system harbored by the phage is fully functional and adaptive.
 
“Virtually all bacteria can be infected by phages. About half of the world’s known bacteria have this adaptive immune system, called CRISPR/Cas, which is used primarily to provide immunity against phages. Although this immune system was commandeered by the phage, its origin remains unknown because the cholera bacterium itself currently lacks this system. What is really remarkable is that the immune system is being used by the phage to adapt to and overcome the defense systems of the cholera bacteria. Finding a CRISPR/Cas system in a phage shows that there is gene flow between the phage and bacteria even for something as large and complex as the genes for an adaptive immune system,” said Seed.
 
“The study lends credence to the controversial idea that viruses are living creatures, and bolsters the possibility of using phage therapy to treat bacterial infections, especially those that are resistant to antibiotic treatment,” said Camilli, professor of Molecular Biology & Microbiology at Tufts University School of Medicine and member of the Molecular Microbiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts University.
 
Camilli’s previous research established that phages are highly prevalent in stool samples from patients with cholera, implying that phage therapy is happening naturally and could be made more effective. In addition, a study published by Camilli in 2008 determined that phage therapy works in a mouse model of cholera intestinal infection.
 
The team is currently working on a study to understand precisely how the phage immune system disables the defense systems of the cholera bacteria. This new knowledge will be important for understanding whether the phage’s immune system could overcome newly acquired or evolved phage defense systems of the cholera bacteria, and thus has implications for designing an effective and stable phage therapy to combat cholera. 
 
Additional authors are David W. Lazinski, Ph.D., senior research associate in the Camilli lab at Tufts University School of Medicine, and Stephen B. Calderwood, M.D., Morton N. Swartz, M.D. academy professor of medicine at Harvard Medical School, and chief, division of infectious disease and vice-chair, department of medicine at Massachusetts General Hospital.
 
Research reported in this publication was supported by the National Institute of Allergies and Infectious Diseases of the National Institutes of Health under award numbers R01AI55058, R01AI045746, and R01AI058935.
 
Seed, K.D., Lazinski, D.W., Calderwood, S.B., and Camilli, A. (2013). A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, vol 494, issue 7438, pp 489–491; DOI: 10.1038/nature11927

Story Source:

The above story is reprinted from materials provided by Tufts University. Imagie Credits: Electron micrograph of bacteriophages infecting a bacterial cell (Dr Graham Beards)

Tags: Bioengineeringimmune systemVirus
Share12Tweet8Share2ShareShareShare2

Related Posts

Photo

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

May 30, 2023
Potential new therapeutic targets in NKTL

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

May 30, 2023

Deconstructing the role of MALAT1 in MAPK-Signaling in melanoma

May 30, 2023

Biological specimens imaged with X-rays without damage

May 30, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

Deconstructing the role of MALAT1 in MAPK-Signaling in melanoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In