• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Virginia Tech team awarded NSF grant to assess how salt in freshwater streams impacts aquatic ecosystems

Bioengineer by Bioengineer
October 19, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Headwater streams, which comprise 70 percent of all watersheds, are becoming more and more contaminated by salt. The seemingly innocuous compound is making its way into the streams and groundwater as a result of agriculture, mining, urbanization and wastewater discharge, leading to headwaters becoming more and more salty.

Study headwater stream

Credit: Virginia Tech

Headwater streams, which comprise 70 percent of all watersheds, are becoming more and more contaminated by salt. The seemingly innocuous compound is making its way into the streams and groundwater as a result of agriculture, mining, urbanization and wastewater discharge, leading to headwaters becoming more and more salty.

This phenomenon, known as salinization, has been slowly changing the composition of the freshwater streams and is having a detrimental effect on the resident microbes and animals that inhabit those waters. Changes to these ecosystems can alter the entire freshwater food web, which can have devastating effects on many species and lesser known large-scale environmental impacts.

Researchers at Virginia Tech were recently awarded a $700,000 grant by the National Science Foundation to investigate how changes in salinity from mining could impact aquatic food webs. The Appalachian region is home to extremely high biodiversity and many vulnerable headwater streams, making it an urgent need to understand how increased freshwater salinization affects food webs in these environments.

“Our team is excited to have the opportunity to figure out how salinized headwaters could result in change to carbon cycling through altered food web energetics,” said Sally Entrekin, associate professor in the Department of Entomology in the College of Agriculture and Life Sciences and one of the leaders of the project.

An example of surface mining in Southwest Virginia, where Sally Entrekin will be conducting her studies.

Professor Stephen Schoenholtz and Associate Professor Daniel McLaughlin of the Department of Forest Resources and Environmental Conservation, both from the College of Natural Resources and Environment; Associate Professor Erin Hotchkiss of the Department of Biological Sciences in the College of Science; and Carl Zipper, professor emeritus from the School of Plant and Environmental Sciences, also are leading the grant. As affiliates of the Global Change Center (GCC) and its Freshwater Salinization Working Group, the team was initially funded by a GCC seed grant that supported the development of this three-year study, where they will expand their collaboration with local educators and scientists in the mining region. 

Ben Heskett, Tony Timpano, and Sally Entrekin conduct seasonal benthic sampling. Photo by Sally Entrekin for Virginia Tech.

The team’s research will focus on streams in the Appalachian Mountains, where surface coal mining covers about 2,200 square miles of the region and has resulted in accelerated leaching of salts into the headwater streams leading to changes in organisms — and likely their functions. These human-made environmental changes threaten the region’s aquatic ecosystems, which are home to more than 10,000 species of microbes and animals. Many of the animals living in these habitats exist only in this region, and collectively these environments feature some of the most diverse aquatic insect communities in the world.

The waterborne organisms make up a complex food web that transform and transfer carbon and other nutrients from the surrounding forest and are crucial to the breakdown of plant materials. Increases in the salt concentration threatens to make these ecosystems uninhabitable for many of the native microorganisms, insects, and other animals and could destabilize the food web and indirectly affect the survival of other species. This vital research will help to assess the damage that an increase in freshwater salt concentration may cause and could be a first step in preventing cascading failures of crucial aquatic habitats.

Members of the team are part of the Global Change Center Freshwater Salinization Working Group and the Aquatic Ecology and Entomology Lab.



Share12Tweet8Share2ShareShareShare2

Related Posts

Drugs to quit smoking

Machine learning identifies drugs that could potentially help smokers quit

January 30, 2023
The team’s new sensor makes use of PEDOT-Cl-coated cotton sandwiched between electrodes.

Under pressure: Breakthrough new material solves problem of wearable sensors

January 30, 2023

Marburg vaccine shows promising results in first-in-human study

January 30, 2023

A landmark solid material that “upconverts” visible light photons to UV light photons changes how we utilize sunlight

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine learning identifies drugs that could potentially help smokers quit

Under pressure: Breakthrough new material solves problem of wearable sensors

Marburg vaccine shows promising results in first-in-human study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In