• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Virginia Tech scientist awarded NIH grant to study CASK-related severe brain disorder

Bioengineer by Bioengineer
September 6, 2025
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the Fralin Biomedical Research Institute at VTC explore dark side of common gene

For children diagnosed with severe and debilitating epileptic brain disorders, the prognosis is often grim. Babies born with a rare form of CASK-linked epileptic encephalopathy called Ohtahara syndrome suffer seizures soon after birth. No treatment or cure exists, and children with the disorder typically don’t survive beyond infancy. Those who do have severe neurological, cognitive, and behavioral impairments.

Sarika Srivastava, a research assistant professor at the Fralin Biomedical Research Institute at VTC, believes the loss of CASK gene function could cripple the ability of brain cells to produce much-needed energy and trigger the progressively worse seizures.

Srivastava, who also holds an appointment as an assistant professor in the Department of Internal Medicine in the Virginia Tech Carilion School of Medicine, is undertaking a five-year study to investigate the mechanisms of CASK loss-of-function mutation associated epileptic encephalopathy, funded by a $2 million grant from the National Institute of Neurological Disorders and Stroke, a part of the National Institutes of Health.

Researchers are still learning the diverse functions of the CASK gene. The gene is found across the animal kingdom, and its dysfunction is associated with neurological, cognitive, and developmental problems. Because the CASK gene is located on the X-chromosome in mammals, the loss-of-function mutations more severely affect males, who have one copy of the X-chromosome. Females have two copies of the X-chromosomes, so as long as the gene is normal in one copy of the chromosome, they are less severely affected.

Srivastava hypothesizes that one of CASK’s roles is to control the function of mitochondria – tiny structures that serve as energy powerhouses of the cell. Mitochondria convert chemical energy from the food we eat into an energy form that the cell can use. When mitochondria stop functioning, the cell is starved of energy. Neurons require large amounts of energy and are affected the most by defective mitochondria.

“No one has studied this connection,” Srivastava said. “It’s completely unknown how CASK controls or regulates mitochondrial function.”

To conduct the research, Srivastava’s laboratory developed a new mouse model in which the CASK gene is deleted from neurons. These mice lacking CASK gene in brain cells mimic the human disease state, including severe underdevelopment, seizure-like characteristics, and early death.

Srivastava’s preliminary research with the mouse model found that deleting CASK from neurons impaired the function of mitochondria and reduced their number in the brain. That impairment diminishes the supply of energy to the brain, potentially causing a complete energy failure and triggering the seizures that characterize a rare disorder like Ohtahara syndrome.

She aims to confirm if the CASK deletion mutation affects mitochondrial function, determine the effects on energy metabolism, and test whether drugs known to boost mitochondrial energy production can mitigate the disease onset or its progression, or both.

Srivastava will conduct the key parts of the study in her laboratory, but studies of the brain’s electrical signals will be carried out by her collaborators on the grant, including Howard Goodkin, professor of neurology who studies pediatric epilepsy at the University of Virginia School of Medicine, and Konark Mukherjee, assistant professor at the Fralin Biomedical Research Institute at VTC who researches the effects of CASK mutations.

###

Written by Matt Chittum

Media Contact
Whitney Slightham
[email protected]

Original Source

https://vtx.vt.edu/articles/2021/06/virginia-tech-scientist-awarded-nih-grant-to-study-the-mechanism.html

Tags: BiologyCell BiologyGenesGeneticsMedicine/HealthMolecular Biologyneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Functional Archaellum Structure in Chloroflexota Bacteria

Functional Archaellum Structure in Chloroflexota Bacteria

September 17, 2025
blank

Nanomaterials Influence on Cellulase from Aspergillus and Trichoderma

September 17, 2025

Decoding Danger: How Australian Lizards Evolved to Outrun Wildfires

September 17, 2025

Optimizing Selenium Intake to Improve Sperm Quality in Broilers

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Fat Diet Hinders Memory Formation by Suppressing Autophagy

Keck Hospital of USC Recognized as Vizient Top Performer for Third Consecutive Year

Exploring Long COVID’s Impact on Menstruation Cycle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.