• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Virginia Tech researchers lead breakthrough in quantum computing

Bioengineer by Bioengineer
July 25, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech

The large, error-correcting quantum computers envisioned today could be decades away, yet experts are vigorously trying to come up with ways to use existing and near-term quantum processors to solve useful problems despite limitations due to errors or “noise.”

A key envisioned use is simulating molecular properties. In the long run, this can lead to advances in materials improvement and drug discovery. But not with noisy calculations confusing the results.

Now, a team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer. Virginia Tech College of Science faculty members Ed Barnes, Sophia Economou, and Nick Mayhall recently published a paper in Nature Communications detailing the advancement.

Quantum computers are expected to be able to carry out certain kinds of calculations far more efficiently than the “classical” computers in use today. They are similar to classical computers, however, in that they run algorithms by applying sequences of logic gates — in this case, “quantum gates,” which together form quantum circuits — to bits of information. For today’s noisy quantum computers, the problem has been that so much noise would accumulate within a circuit that the computation would degrade and render any subsequent calculations inaccurate. Scientists have had difficulty designing circuits that are both shorter and more accurate.

The Virginia Tech team addressed this issue by developing a method that grows the circuit in an iterative way. “We start with a minimal circuit, then grow it as we add on logic gate after logic gate in short circuits until the computer finds the solution,” said Mayhall, an assistant professor in the Department of Chemistry.

A second major benefit of the algorithm is that Barnes, Economou, and Mayhall designed it to adapt itself based upon the molecular system being simulated. Different molecules will dictate their own circuits, uniquely tailored to them.

The interdisciplinary collaboration between Virginia Tech’s departments of Chemistry and Physics — Barnes, Economou, and Mayhall and a team of graduate students and postdocs from both departments — have received grants from the National Science Foundation and the U.S. Department of Energy totaling more than $2.8 million.

Virginia Tech and IBM recently established a partnership that gives the researchers access to IBM’s quantum computing hardware. “Our team at Virginia Tech is really excited for the next steps in our work,” said Economou, an associate professor in the Department of Physics, “which include implementing our algorithm on IBM’s processors.”

###

Media Contact
Lon Wagner
[email protected]

Original Source

http://vtnews.vt.edu/articles/2019/07/science-quantum_computing_nature_communications.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-10988-2

Tags: Chemistry/Physics/Materials SciencesEducationMedicine/HealthScience/MathTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

September 18, 2025
UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measuring Maternal-Fetal Fentanyl Transfer During Epidurals

Atomic-Scale Imaging Reveals Frequency-Dependent Phonon Anisotropy

Atlantic Reef Decline Boosts Sea-Level Rise

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.