• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Virginia Tech researcher probes the potential for preventing and reversing age-related memory loss

Bioengineer by Bioengineer
December 13, 2023
in Health
Reading Time: 2 mins read
0
Tim Jarome
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

About 40 percent of people over age 65 suffer some form of age-related memory loss, which puts them at higher risk for developing dementia and Alzheimer’s disease. However, there are currently no approved methods for preventing memory loss with age.

Tim Jarome

Credit: Photo by Max Esterhuizen for Virginia Tech.

About 40 percent of people over age 65 suffer some form of age-related memory loss, which puts them at higher risk for developing dementia and Alzheimer’s disease. However, there are currently no approved methods for preventing memory loss with age.

Tim Jarome, associate professor of neurobiology in the Virginia Tech College of Agriculture and Life Sciences’ School of Animal Sciences is hoping to change that, aided by a $433,000 grant from the National Institute on Aging, which is part of the National Institutes of Health.

Jarome and his research partner, Assistant Professor Sydney Trask of Purdue University’s Department of Psychological Sciences, aim to manipulate a protein complex called the proteasome in the hippocampus region of the brain to determine its role in memory loss.

“We’ve known for quite some time that proteasome function decreases over a person’s lifespan and that it’s likely related to memory loss, but it’s never been directly shown because no one’s been able to manipulate the proteasome,” Jarome said.

Using a gene-editing tool called CRISPR-Cas9, Jarome and his team have been the first researchers to successfully stimulate the proteasome within the hippocampus. In the next phase of their research, they will manipulate the proteasome to determine whether it can be increased to prevent and restore age-related memory loss.

“We hope this project will significantly advance our understanding of how proteasome dysfunction contributes to age-related cognitive decline,” Jarome said. “If successful, it has the potential to contribute to the development of novel therapeutic strategies to prevent or reverse memory loss associated with age and age-associated neurodegenerative disorders that impact the hippocampus.”

Their work carries significance for understanding and treating not only memory loss from natural aging but also degenerative brain diseases such as Alzheimer’s and dementia, which affect more than 10 percent of Americans over age 65.

“We hope this research will yield the first connection between proteasome dysfunction with age and memory loss with age and that we’ll be able to show that by controlling the proteasome we can control memory with age,” Jarome said. “If we can fix this one mechanism, we might be able to fix a lot of the things that are going wrong as we age that contribute to memory loss with age. It gives us a therapeutic target we can start to develop strategies around to stimulate and, hopefully, improve memory across the lifespan.”



Share12Tweet8Share2ShareShareShare2

Related Posts

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

October 27, 2025

ACHO: Enhancing Treatment Adherence through Digital Care

October 27, 2025

Decline in Opioid Prescriptions for Pain Management Observed in Canada

October 27, 2025

Canada Struggles to Address Growing Youth Opioid Use Crisis

October 27, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1285 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Henna’s Healing Power: A Breakthrough Chemical from Lawsonia inermis Fights Fibrosis

ACHO: Enhancing Treatment Adherence through Digital Care

Decline in Opioid Prescriptions for Pain Management Observed in Canada

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.