• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Vibrating 2D materials

Bioengineer by Bioengineer
February 11, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (Photo: Susanne Pfarr / University of Würzburg)

Current electronic components in computers, mobile phones and many other devices are based on microstructured silicon carriers. However, this technology has almost reached its physical limits and the smallest possible structure sizes.

Two-dimensional (2D) materials are therefore being intensively researched. One can imagine these materials as extremely thin films consisting of only one layer of atoms. The best known is graphene, an atomically thin layer of graphite. For its discovery, Andre Geim and Konstantin Novoselov received the Nobel Prize in Physics in 2010.

While graphene consists purely of carbon, there are numerous other 2D compounds that are characterised by special optical and electronic properties. Countless potential applications of these compounds are currently being researched, for example for use in solar cells, in micro- and optoelectronics, in composite materials, catalysis, in various types of sensors and light detectors, in biomedical imaging or in the transport of drugs in the organism.

Light energy can make 2D materials vibrate

For the function of these 2D compounds, one exploits their special properties. “It is important to know how they react to excitation with light,” says Professor Tobias Brixner, head of the Chair of Physical Chemistry I at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany.

In principle, 2D materials are electronically excited just like ordinary silicon solar cells when sufficient light energy hits them. However, the energy can cause the atomically thin layer to vibrate at the same time. This in turn influences the optoelectronic properties.

Strength of exciton-phonon coupling is difficult to determine

Until now, it was unknown how strongly light excites such oscillations in a 2D material at room temperature. Now, in an international collaboration, a team led by Tobias Brixner has succeeded for the first time in determining the strength of the oscillation excitation upon light absorption in a 2D material – namely in a “transition metal dichalcogenide” – at room temperature.

“This quantity, known in technical jargon as exciton-phonon coupling strength, is difficult to determine because at room temperature the absorption spectrum is very much ‘smeared out’ and no individual spectral lines can be separated,” says the JMU physicist and physical chemist.

Postdoc developed coherent 2D microscopy

Now, however, postdoctoral researcher Dr Donghai Li in Würzburg has developed the method of “coherent 2D microscopy”. It combines the spatial resolution of a microscope with the femtosecond time resolution of ultra-short laser pulses and with the multi-dimensional frequency resolution. This allowed Li to quantify the influence of the oscillations.

Brixner explains: “Surprisingly, it turned out that the exciton-phonon coupling strength in the investigated material is much greater than in conventional semiconductors. This finding is helpful in the further development of 2D materials for specific applications.”

###

The members of the international research team

Research teams led by Andrea Ferrari from the Graphene Center at Cambridge University (UK), Giancarlo Soavi from the Abbe Center of Photonics at the University of Jena and Giulio Cerullo from Politecnico di Milano (Italy) were involved in the study, which appeared in the journal Nature Communications on 11.02.2021.

Media Contact
Prof. Dr. Tobias Brixner
[email protected]

Original Source

https://go.uniwue.de/coh2dmic

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-20895-0

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025

Social Exposome Links to Dementia in Latin America

September 11, 2025

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025

Comparative Pharmacokinetics of Levamisole Across Species

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.