• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Vast bubble of galaxies discovered, given Hawaiian name

Bioengineer by Bioengineer
September 5, 2023
in Chemistry
Reading Time: 4 mins read
0
Illustration of Hoʻoleilana
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Hawaiʻi-led discovery of an immense bubble 820 million light years from Earth is believed to be a fossil-like remnant of the birth of the universe. Astronomer Brent Tully from the UH Institute for Astronomy and his team unexpectedly found the bubble within a web of galaxies. The entity has been given the name Hoʻoleilana, a term drawn from the Kumulipo, a Hawaiian creation chant evoking the origin of structure. 

Illustration of Hoʻoleilana

Credit: Frédéric Durillon, Animea Studio; Daniel Pomarède, IRFU, CEA University Paris-Saclay. This work benefited from a government funding by France 2030 (P2I – Graduate School of Physics) under reference ANR-11-IDEX-0003.

A University of Hawaiʻi-led discovery of an immense bubble 820 million light years from Earth is believed to be a fossil-like remnant of the birth of the universe. Astronomer Brent Tully from the UH Institute for Astronomy and his team unexpectedly found the bubble within a web of galaxies. The entity has been given the name Hoʻoleilana, a term drawn from the Kumulipo, a Hawaiian creation chant evoking the origin of structure. 

The new findings published in The Astrophysical Journal, mention these massive structures are predicted by the Big Bang theory, as the result of 3D ripples found in the material of the early universe, known as Baryon Acoustic Oscillations (BAO).  

“We were not looking for it. It is so huge that it spills to the edges of the sector of the sky that we were analyzing,” explained Tully. “As an enhancement in the density of galaxies it is a much stronger feature than expected. The very large diameter of one billion light years is beyond theoretical expectations. If its formation and evolution are in accordance with theory, this BAO is closer than anticipated, implying a high value for the expansion rate of the universe.”

Astronomers located the bubble using data from Cosmicflows-4, which is to date, the largest compilation of precise distances to galaxies. Tully co-published the exceptional catalog in fall 2022. His team of researchers believe this may be the first time astronomers identified an individual structure associated with a BAO. The discovery could help bolster scientists’ knowledge of the effects of galaxy evolution. 

Related UH News story: UH astronomers map distances to 56,000 galaxies, largest-ever catalog, September 26, 2022

Enormous bubbles of matter

In the well-established Big Bang theory, during the first 400,000 years, the universe is a cauldron of hot plasma similar to the interior of the Sun. Within a plasma, electrons were separated from the atomic nuclei. During this period, regions with slightly higher density began to collapse under gravity, even as the intense bath of radiation attempted to push matter apart. This struggle between gravity and radiation made the plasma oscillate or ripple and spread outward. 

The largest ripples in the early universe depended on the distance a sound wave could travel. Set by the speed of sound in the plasma, this distance was almost 500 million light years, and was fixed once the universe cooled and stopped being a plasma, leaving vast three-dimensional ripples. Throughout the eons, galaxies formed at the density peaks, in enormous bubble-like structures. Patterns in the distribution of galaxies, properly discerned, could reveal the properties of these ancient messengers. 

“I am the cartographer of the group, and mapping Hoʻoleilana in three dimensions helps us understand its content and relationship with its surroundings,” said researcher Daniel Pomarede of CEA Paris-Saclay University in France. “It was an amazing process to construct this map and see how the giant shell structure of Hoʻoleilana is composed of elements that were identified in the past as being themselves some of the largest structures of the universe.”

This same team of researchers also identified the Laniākea Supercluster in 2014. That structure, which includes the Milky Way, is small in comparison. Stretching at a diameter of about 500 million light years, Laniākea extends to the near edge of this much larger bubble.

Uncovering a single BAO

Tully’s team discovered that Hoʻoleilana had been noted in a 2016 research paper as the most prominent of several shell-like structures seen in the Sloan Digital Sky Survey. However, the earlier work did not reveal the full extent of the structure, and that team did not conclude they had found a BAO. 

 Using the Cosmicflows-4 catalog, the researchers were able to see a full spherical shell of galaxies, identify its center, and show that there is a statistical enhancement in the density of galaxies in all directions from that center. Hoʻoleilana encompasses many well-known structures previously found by astronomers, such as the Harvard/Smithsonian Great Wall containing the Coma Cluster, the Hercules Cluster and the Sloan Great Wall. The Boötes Supercluster resides at its center. The historic Boötes Void, a massive empty spherical region, lies inside Hoʻoleilana.

The implications of Hoʻoleilana

Tests with simulations have demonstrated that the shell structure identified as Hoʻoleilana has less than 1% probability of being a statistical accident. Hoʻoleilana has the properties of a theoretically anticipated baryon acoustic oscillation, including the prominence at its center of a rich supercluster, however it stands out stronger than expected. In detail, Hoʻoleilana is slightly larger than anticipated from the theory of the standard model of cosmology, and what has been found from prior statistical pair-wise studies of galaxy separations. The size is in accord with observations of the local expansion rate of the universe and of galaxy flows on large scales that also hint at subtle problems with the standard model.



Journal

The Astrophysical Journal

DOI

10.3847/1538-4357/aceaf3

Article Title

Ho’oleilana: An Individual Baryon Acoustic Oscillation?

Article Publication Date

5-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.