• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Variable venom — why are some snakes deadlier than others?

Bioengineer by Bioengineer
January 8, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Benjamin Tapley.


An international collaboration led by scientists from the National University of Ireland, Galway, The University of St Andrews, Trinity College Dublin and the Zoological Society of London has uncovered why the venom of some snakes makes them so much deadlier than others.

Snakes are infamous for possessing potent venoms, a fact that makes them deadly predators and also strikes fear into humans and other animals alike. However, some species, such as cobras, boomslangs and rattlesnakes have far more venom than they apparently need–in a single reserve of venom, they have the potential to kill thousands of their prey animals and several adult humans.

But not all venomous snakes are so dangerous. For example, the marbled sea snake has only a tiny amount of very weak venom, making it effectively harmless to any relatively large animals such as humans. Why venoms vary so much in their ability to kill or incapacitate potential prey animals has long puzzled scientists, with several competing hypotheses suggested as explanations.

The study, which has just been published in international journal Ecology Letters, tackled this puzzle by comparing records of venom potency and quantity for over 100 venomous snake species, ranging from rattlesnakes, cobras and the tree dwelling boomslangs of Africa to sea snakes and burrowing asps. The team found strong evidence that venoms have evolved to be more potent against animals that are closely related to the species that the snake commonly eats.

Dr Kevin Healy, who conducted the research at the University of St Andrews and is now Lecturer of Zoology at the National University of Ireland Galway, is the lead author of the study. He said: “These results make sense from an evolutionary viewpoint as we expect that evolution will have shaped venoms to be more efficient at killing the prey animals they are most often the target of the venom. You won’t find many mice in the sea so we wouldn’t expect a sea snake to evolve venom that is more effective at killing mice than fish.”

The research also showed that the amount of venom a snake has depends on both its size and the environment it lives in.

“Like all substances venom is dosage-dependent,” said Associate Professor in Zoology at Trinity College Dublin, Dr Andrew Jackson. “Even alcohol, coffee and water can be toxic at high enough volumes so we needed to consider how much venom different species of snake produce and store in their venom glands. We found that big terrestrial species have the most venom, while smaller tree dwelling or aquatic species had the least. This difference may be due to how often a snake encounters its prey in these different environments, with terrestrial species requiring a larger reserve of venom to take advantage of the rarer opportunities to feed.”

The results of the study also have potential to aid in our understanding when it comes to human snakebites.

“Snakebites are a major health concern worldwide, with 2.7 million cases each year,” commented Dr Chris Carbone of the Institute of Zoology in the Zoological Society of London. “Understanding how venom evolves may help us better identify the risks to humans from different snake groups, and also potentially from other venomous animals such as spiders, scorpions, centipedes and jellyfish.”

The approach used in the study may also help researchers predict the potency of venoms in species that have yet to be tested, and even pinpoint potentially useful healthcare-related applications.

Dr Healy added: “The next step is to see how well this model may predict the potency of venoms in groups that have yet to have their venoms tested. By using ecological and evolutionary data for available species we may be able to use our approach as a tool to identify other species which may have properties in their venoms that are useful for biomedical purposes, such as drug development.”

###

Media Contact
Thomas Deane
[email protected]
353-189-64685

Related Journal Article

http://dx.doi.org/10.1111/ele.13216

Tags: BiodiversityBiologyEvolutionPharmaceutical ScienceToxicologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.